Serial Rings PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Serial Rings PDF full book. Access full book title Serial Rings by G. Puninski. Download full books in PDF and EPUB format.

Serial Rings

Serial Rings PDF Author: G. Puninski
Publisher: Springer Science & Business Media
ISBN: 9401006520
Category : Mathematics
Languages : en
Pages : 235

Book Description
The main theme in classical ring theory is the structure theory of rings of a particular kind. For example, no one text book in ring theory could miss the Wedderburn-Artin theorem, which says that a ring R is semisimple Artinian iffR is isomorphic to a finite direct sum of full matrix rings over skew fields. This is an example of a finiteness condition which, at least historically, has dominated in ring theory. Ifwe would like to consider a requirement of a lattice-theoretical type, other than being Artinian or Noetherian, the most natural is uni-seriality. Here a module M is called uni-serial if its lattice of submodules is a chain, and a ring R is uni-serial if both RR and RR are uni-serial modules. The class of uni-serial rings includes commutative valuation rings and closed under homomorphic images. But it is not closed under direct sums nor with respect to Morita equivalence: a matrix ring over a uni-serial ring is not uni-serial. There is a class of rings which is very close to uni-serial but closed under the constructions just mentioned: serial rings. A ring R is called serial if RR and RR is a direct sum (necessarily finite) of uni-serial modules. Amongst others this class includes triangular matrix rings over a skew field. Also if F is a finite field of characteristic p and G is a finite group with a cyclic normal p-Sylow subgroup, then the group ring FG is serial.

Serial Rings

Serial Rings PDF Author: G. Puninski
Publisher: Springer Science & Business Media
ISBN: 9401006520
Category : Mathematics
Languages : en
Pages : 235

Book Description
The main theme in classical ring theory is the structure theory of rings of a particular kind. For example, no one text book in ring theory could miss the Wedderburn-Artin theorem, which says that a ring R is semisimple Artinian iffR is isomorphic to a finite direct sum of full matrix rings over skew fields. This is an example of a finiteness condition which, at least historically, has dominated in ring theory. Ifwe would like to consider a requirement of a lattice-theoretical type, other than being Artinian or Noetherian, the most natural is uni-seriality. Here a module M is called uni-serial if its lattice of submodules is a chain, and a ring R is uni-serial if both RR and RR are uni-serial modules. The class of uni-serial rings includes commutative valuation rings and closed under homomorphic images. But it is not closed under direct sums nor with respect to Morita equivalence: a matrix ring over a uni-serial ring is not uni-serial. There is a class of rings which is very close to uni-serial but closed under the constructions just mentioned: serial rings. A ring R is called serial if RR and RR is a direct sum (necessarily finite) of uni-serial modules. Amongst others this class includes triangular matrix rings over a skew field. Also if F is a finite field of characteristic p and G is a finite group with a cyclic normal p-Sylow subgroup, then the group ring FG is serial.

Algebras, Rings and Modules

Algebras, Rings and Modules PDF Author: Michiel Hazewinkel
Publisher: CRC Press
ISBN: 1482245051
Category : Mathematics
Languages : en
Pages : 384

Book Description
The theory of algebras, rings, and modules is one of the fundamental domains of modern mathematics. General algebra, more specifically non-commutative algebra, is poised for major advances in the twenty-first century (together with and in interaction with combinatorics), just as topology, analysis, and probability experienced in the twentieth centu

Handbook of Algebra

Handbook of Algebra PDF Author: M. Hazewinkel
Publisher: Elsevier
ISBN: 0080532969
Category : Mathematics
Languages : en
Pages : 899

Book Description
Handbook of Algebra

Semidistributive Modules and Rings

Semidistributive Modules and Rings PDF Author: A.A. Tuganbaev
Publisher: Springer Science & Business Media
ISBN: 9401150869
Category : Mathematics
Languages : en
Pages : 368

Book Description
A module M is called distributive if the lattice Lat(M) of all its submodules is distributive, i.e., Fn(G + H) = FnG + FnH for all submodules F,G, and H of the module M. A module M is called uniserial if all its submodules are comparable with respect to inclusion, i.e., the lattice Lat(M) is a chain. Any direct sum of distributive (resp. uniserial) modules is called a semidistributive (resp. serial) module. The class of distributive (resp. semidistributive) modules properly cont.ains the class ofall uniserial (resp. serial) modules. In particular, all simple (resp. semisimple) modules are distributive (resp. semidistributive). All strongly regular rings (for example, all factor rings of direct products of division rings and all commutative regular rings) are distributive; all valuation rings in division rings and all commutative Dedekind rings (e.g., rings of integral algebraic numbers or commutative principal ideal rings) are distributive. A module is called a Bezout module or a locally cyclic module ifevery finitely generated submodule is cyclic. If all maximal right ideals of a ring A are ideals (e.g., if A is commutative), then all Bezout A-modules are distributive.

Laurent Series Rings and Related Rings

Laurent Series Rings and Related Rings PDF Author: Askar Tuganbaev
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 311070224X
Category : Mathematics
Languages : en
Pages : 150

Book Description
In this book, ring-theoretical properties of skew Laurent series rings A((x; φ)) over a ring A, where A is an associative ring with non-zero identity element are described. In addition, we consider Laurent rings and Malcev-Neumann rings, which are proper extensions of skew Laurent series rings.

Groups, Rings and Group Rings

Groups, Rings and Group Rings PDF Author: Antonio Giambruno
Publisher: CRC Press
ISBN: 1420010964
Category : Mathematics
Languages : en
Pages : 369

Book Description
This book is a collection of research papers and surveys on algebra that were presented at the Conference on Groups, Rings, and Group Rings held in Ubatuba, Brazil. This text familiarizes researchers with the latest topics, techniques, and methodologies in several branches of contemporary algebra. With extensive coverage, it examines broad themes f

Rings and Things and a Fine Array of Twentieth Century Associative Algebra

Rings and Things and a Fine Array of Twentieth Century Associative Algebra PDF Author: Carl Clifton Faith
Publisher: American Mathematical Soc.
ISBN: 0821836722
Category : Mathematics
Languages : en
Pages : 513

Book Description
This book surveys more than 125 years of aspects of associative algebras, especially ring and module theory. It is the first to probe so extensively such a wealth of historical development. Moreover, the author brings the reader up to date, in particular through his report on the subject in the second half of the twentieth century. Included in the book are certain categorical properties from theorems of Frobenius and Stickelberger on the primary decomposition of finite Abelian formulations of the latter by Krull, Goldman, and others; Maschke's theorem on the representation theory of finite groups over a field; and the fundamental theorems of Wedderburn on the structure of finite dimensional algebras Goldie, and others. A special feature of the book is the in-depth study of rings with chain condition on annihilator ideals pioneered by Noether, Artin, and Jacobson and refined and extended by many later mathematicians. Two of the author's prior works, Algebra: Rings, Modules and Categories, I and II (Springer-Verlag, 1973), are devoted to the development of modern associative algebra and ring and module theory. Those bibliography of over 1,600 references and is exhaustively indexed. In addition to the mathematical survey, the author gives candid and descriptive impressions of the last half of the twentieth century in ''Part II: Snapshots of fellow graduate students at the University of Kentucky and at Purdue, Faith discusses his Fulbright-Nato Postdoctoral at Heidelberg and at the Institute for Advanced Study (IAS) at Princeton, his year as a visiting scholar at Berkeley, and the many acquaintances he met there and in subsequent travels in India, Europe, and most recently, Barcelona. Comments on the first edition: ''Researchers in algebra should find it both full references as to the origin and development of the theorem ... I know of no other work in print which does this as thoroughly and as broadly.'' --John O'Neill, University of Detroit at Mercy '' 'Part II: Snapshots of Mathematicians of my age and younger will relish reading 'Snapshots'.'' --James A. Huckaba, University of Missouri-Columbia

Advances in Ring Theory

Advances in Ring Theory PDF Author: S.K. Jain
Publisher: Springer Science & Business Media
ISBN: 1461219787
Category : Mathematics
Languages : en
Pages : 330

Book Description


Algebra II Ring Theory

Algebra II Ring Theory PDF Author: Carl Faith
Publisher: Springer Science & Business Media
ISBN: 3642653219
Category : Mathematics
Languages : en
Pages : 319

Book Description


Rings and Categories of Modules

Rings and Categories of Modules PDF Author: Frank W. Anderson
Publisher: Springer Science & Business Media
ISBN: 1461244188
Category : Mathematics
Languages : en
Pages : 386

Book Description
This book is intended to provide a reasonably self-contained account of a major portion of the general theory of rings and modules suitable as a text for introductory and more advanced graduate courses. We assume the famil iarity with rings usually acquired in standard undergraduate algebra courses. Our general approach is categorical rather than arithmetical. The continuing theme of the text is the study of the relationship between the one-sided ideal structure that a ring may possess and the behavior of its categories of modules. Following a brief outline of set-theoretic and categorical foundations, the text begins with the basic definitions and properties of rings, modules and homomorphisms and ranges through comprehensive treatments of direct sums, finiteness conditions, the Wedderburn-Artin Theorem, the Jacobson radical, the hom and tensor functions, Morita equivalence and duality, de composition theory of injective and projective modules, and semi perfect and perfect rings. In this second edition we have included a chapter containing many of the classical results on artinian rings that have hdped to form the foundation for much of the contemporary research on the representation theory of artinian rings and finite dimensional algebras. Both to illustrate the text and to extend it we have included a substantial number of exercises covering a wide spectrum of difficulty. There are, of course" many important areas of ring and module theory that the text does not touch upon.