Sequence Learning PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Sequence Learning PDF full book. Access full book title Sequence Learning by Ron Sun. Download full books in PDF and EPUB format.

Sequence Learning

Sequence Learning PDF Author: Ron Sun
Publisher: Springer
ISBN: 354044565X
Category : Computers
Languages : en
Pages : 400

Book Description
Sequential behavior is essential to intelligence in general and a fundamental part of human activities, ranging from reasoning to language, and from everyday skills to complex problem solving. Sequence learning is an important component of learning in many tasks and application fields: planning, reasoning, robotics natural language processing, speech recognition, adaptive control, time series prediction, financial engineering, DNA sequencing, and so on. This book presents coherently integrated chapters by leading authorities and assesses the state of the art in sequence learning by introducing essential models and algorithms and by examining a variety of applications. The book offers topical sections on sequence clustering and learning with Markov models, sequence prediction and recognition with neural networks, sequence discovery with symbolic methods, sequential decision making, biologically inspired sequence learning models.

Sequence Learning

Sequence Learning PDF Author: Ron Sun
Publisher: Springer
ISBN: 354044565X
Category : Computers
Languages : en
Pages : 400

Book Description
Sequential behavior is essential to intelligence in general and a fundamental part of human activities, ranging from reasoning to language, and from everyday skills to complex problem solving. Sequence learning is an important component of learning in many tasks and application fields: planning, reasoning, robotics natural language processing, speech recognition, adaptive control, time series prediction, financial engineering, DNA sequencing, and so on. This book presents coherently integrated chapters by leading authorities and assesses the state of the art in sequence learning by introducing essential models and algorithms and by examining a variety of applications. The book offers topical sections on sequence clustering and learning with Markov models, sequence prediction and recognition with neural networks, sequence discovery with symbolic methods, sequential decision making, biologically inspired sequence learning models.

Speech & Language Processing

Speech & Language Processing PDF Author: Dan Jurafsky
Publisher: Pearson Education India
ISBN: 9788131716724
Category :
Languages : en
Pages : 912

Book Description


Deep Learning for Natural Language Processing

Deep Learning for Natural Language Processing PDF Author: Jason Brownlee
Publisher: Machine Learning Mastery
ISBN:
Category : Computers
Languages : en
Pages : 413

Book Description
Deep learning methods are achieving state-of-the-art results on challenging machine learning problems such as describing photos and translating text from one language to another. In this new laser-focused Ebook, finally cut through the math, research papers and patchwork descriptions about natural language processing. Using clear explanations, standard Python libraries and step-by-step tutorial lessons you will discover what natural language processing is, the promise of deep learning in the field, how to clean and prepare text data for modeling, and how to develop deep learning models for your own natural language processing projects.

Building AI Intensive Python Applications

Building AI Intensive Python Applications PDF Author: Rachelle Palmer
Publisher: Packt Publishing Ltd
ISBN: 1836207247
Category : Computers
Languages : en
Pages : 299

Book Description
Master retrieval-augmented generation architecture and fine-tune your AI stack, along with discovering real-world use cases and best practices to create powerful AI apps Key Features Get to grips with the fundamentals of LLMs, vector databases, and Python frameworks Implement effective retrieval-augmented generation strategies with MongoDB Atlas Optimize AI models for performance and accuracy with model compression and deployment optimization Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionThe era of generative AI is upon us, and this book serves as a roadmap to harness its full potential. With its help, you’ll learn the core components of the AI stack: large language models (LLMs), vector databases, and Python frameworks, and see how these technologies work together to create intelligent applications. The chapters will help you discover best practices for data preparation, model selection, and fine-tuning, and teach you advanced techniques such as retrieval-augmented generation (RAG) to overcome common challenges, such as hallucinations and data leakage. You’ll get a solid understanding of vector databases, implement effective vector search strategies, refine models for accuracy, and optimize performance to achieve impactful results. You’ll also identify and address AI failures to ensure your applications deliver reliable and valuable results. By evaluating and improving the output of LLMs, you’ll be able to enhance their performance and relevance. By the end of this book, you’ll be well-equipped to build sophisticated AI applications that deliver real-world value.What you will learn Understand the architecture and components of the generative AI stack Explore the role of vector databases in enhancing AI applications Master Python frameworks for AI development Implement Vector Search in AI applications Find out how to effectively evaluate LLM output Overcome common failures and challenges in AI development Who this book is for This book is for software engineers and developers looking to build intelligent applications using generative AI. While the book is suitable for beginners, a basic understanding of Python programming is required to make the most of it.

Machine Learning Fundamentals

Machine Learning Fundamentals PDF Author: Hui Jiang
Publisher: Cambridge University Press
ISBN: 1108837042
Category : Computers
Languages : en
Pages : 423

Book Description
A coherent introduction to core concepts and deep learning techniques that are critical to academic research and real-world applications.

Deep Learning for NLP and Speech Recognition

Deep Learning for NLP and Speech Recognition PDF Author: Uday Kamath
Publisher: Springer
ISBN: 3030145964
Category : Computers
Languages : en
Pages : 640

Book Description
This textbook explains Deep Learning Architecture, with applications to various NLP Tasks, including Document Classification, Machine Translation, Language Modeling, and Speech Recognition. With the widespread adoption of deep learning, natural language processing (NLP),and speech applications in many areas (including Finance, Healthcare, and Government) there is a growing need for one comprehensive resource that maps deep learning techniques to NLP and speech and provides insights into using the tools and libraries for real-world applications. Deep Learning for NLP and Speech Recognition explains recent deep learning methods applicable to NLP and speech, provides state-of-the-art approaches, and offers real-world case studies with code to provide hands-on experience. Many books focus on deep learning theory or deep learning for NLP-specific tasks while others are cookbooks for tools and libraries, but the constant flux of new algorithms, tools, frameworks, and libraries in a rapidly evolving landscape means that there are few available texts that offer the material in this book. The book is organized into three parts, aligning to different groups of readers and their expertise. The three parts are: Machine Learning, NLP, and Speech Introduction The first part has three chapters that introduce readers to the fields of NLP, speech recognition, deep learning and machine learning with basic theory and hands-on case studies using Python-based tools and libraries. Deep Learning Basics The five chapters in the second part introduce deep learning and various topics that are crucial for speech and text processing, including word embeddings, convolutional neural networks, recurrent neural networks and speech recognition basics. Theory, practical tips, state-of-the-art methods, experimentations and analysis in using the methods discussed in theory on real-world tasks. Advanced Deep Learning Techniques for Text and Speech The third part has five chapters that discuss the latest and cutting-edge research in the areas of deep learning that intersect with NLP and speech. Topics including attention mechanisms, memory augmented networks, transfer learning, multi-task learning, domain adaptation, reinforcement learning, and end-to-end deep learning for speech recognition are covered using case studies.

Supervised Sequence Labelling with Recurrent Neural Networks

Supervised Sequence Labelling with Recurrent Neural Networks PDF Author: Alex Graves
Publisher: Springer
ISBN: 3642247970
Category : Technology & Engineering
Languages : en
Pages : 148

Book Description
Supervised sequence labelling is a vital area of machine learning, encompassing tasks such as speech, handwriting and gesture recognition, protein secondary structure prediction and part-of-speech tagging. Recurrent neural networks are powerful sequence learning tools—robust to input noise and distortion, able to exploit long-range contextual information—that would seem ideally suited to such problems. However their role in large-scale sequence labelling systems has so far been auxiliary. The goal of this book is a complete framework for classifying and transcribing sequential data with recurrent neural networks only. Three main innovations are introduced in order to realise this goal. Firstly, the connectionist temporal classification output layer allows the framework to be trained with unsegmented target sequences, such as phoneme-level speech transcriptions; this is in contrast to previous connectionist approaches, which were dependent on error-prone prior segmentation. Secondly, multidimensional recurrent neural networks extend the framework in a natural way to data with more than one spatio-temporal dimension, such as images and videos. Thirdly, the use of hierarchical subsampling makes it feasible to apply the framework to very large or high resolution sequences, such as raw audio or video. Experimental validation is provided by state-of-the-art results in speech and handwriting recognition.

Introduction to Deep Learning: A Beginner’s Edition

Introduction to Deep Learning: A Beginner’s Edition PDF Author: Harshitha Raghavan Devarajan
Publisher: INENCE PUBLICATIONS PVT LTD
ISBN: 9395940204
Category : Antiques & Collectibles
Languages : en
Pages : 174

Book Description
"Introduction to Deep Learning: A Beginner’s Edition" is a comprehensive guide designed specifically for newcomers to the field of deep learning. This book provides an accessible introduction to the fundamental concepts, making it an ideal starting point for those who are curious about artificial intelligence and its rapidly expanding applications. The book begins with a clear explanation of what deep learning is and how it differs from traditional machine learning, covering the basics of neural networks and how they are used to recognize patterns and make decisions. One of the key strengths of this book is its practical, hands-on approach. Readers are guided through the process of building, training, and deploying neural networks using popular frameworks like TensorFlow and PyTorch. The step-by-step instructions, along with code snippets, allow even those with little to no programming experience to engage actively with the material. Visual aids, such as diagrams and flowcharts, are used throughout the book to simplify complex topics, making it easier for readers to grasp the inner workings of neural networks. The book also explores real-world applications of deep learning, highlighting its impact across various industries, including healthcare, autonomous vehicles, and natural language processing. By providing context and practical examples, the book demonstrates how deep learning is being used to solve complex problems and transform industries. In addition to the core content, the book includes a glossary of key terms, quizzes, and exercises to reinforce learning. "Introduction to Deep Learning: A Beginner’s Edition" is more than just a textbook; it is a complete learning experience designed to equip beginners with the knowledge and skills needed to embark on a successful journey into the world of deep learning.

Deep Learning With Python Illustrated Guide For Beginners & Intermediates

Deep Learning With Python Illustrated Guide For Beginners & Intermediates PDF Author: William Sullivan
Publisher: PublishDrive
ISBN:
Category : Computers
Languages : en
Pages : 142

Book Description
Deep Learning With Python Illustrated Guide For Beginners And Intermediates "Learn By Doing Approach" Includes Keras with Tensorflow Backend Deep learning originates from a broader family of machine learning, including supervised and unsupervised learning The python programming language is one of the most popular languages for programmers in the 21st century. This programming language has been a fundamental cornerstone in a lot of technology we use today. -Things we take for granted on a daily basis. Developing both desktop and web applications, and more interestingly enough has been used to accomplish many artificial intelligence feats. The world is constantly changing and evolving and it appears machine learning could be the way of the future! As we speak technology on a massive scale is being developed to replace mundane and repetitive tasks humans interface with everyday through the use of "deep learning". Ultimately, this means less human errors and a more efficient ways of operating for many corporations. You can potentially become the next big start-up! Develop software, web development tools and many more online ventures! Companies That Use Python Currently Google Facebook Dropbox Yahoo IBM Mozilla Quora Why Programmers Choose To Use Python? Readable & Maintainable Code Dynamic Type System Compatible with Major Platforms and Systems Robust Standard Library Simplifies Complex Software Development Test Driven Development Highly Sought After Skill-Set For Employers Invest in your knowledge base by buying your copy right now. The greatest investment you can make is an investment in yourself! Python will pave the road of technological advancements and very much so shape the world we live in. Become apart of this global progression towards advanced technology through the use of "deep learning". What You'll Learn What is deep learning Theory of Artificial Neural Network Artificial Neural Network with Keras Image Classification with Convolutional Neural Network Environment Setup Natural Language Processing Evaluating and Tuning the ANN Sequence Modeling And, much, much more! By the end of this book you will have grasped the fundamentals of python programming & deep learning! There is also illustrations to go along to help you understand and retain the info on a much more profound level. Picture diagrams have scientifically proven to accelerate the learning process by over 120%! Buy Your Copy Right Now!

Neural Networks and Deep Learning

Neural Networks and Deep Learning PDF Author: Charu C. Aggarwal
Publisher: Springer
ISBN: 3319944630
Category : Computers
Languages : en
Pages : 512

Book Description
This book covers both classical and modern models in deep learning. The primary focus is on the theory and algorithms of deep learning. The theory and algorithms of neural networks are particularly important for understanding important concepts, so that one can understand the important design concepts of neural architectures in different applications. Why do neural networks work? When do they work better than off-the-shelf machine-learning models? When is depth useful? Why is training neural networks so hard? What are the pitfalls? The book is also rich in discussing different applications in order to give the practitioner a flavor of how neural architectures are designed for different types of problems. Applications associated with many different areas like recommender systems, machine translation, image captioning, image classification, reinforcement-learning based gaming, and text analytics are covered. The chapters of this book span three categories: The basics of neural networks: Many traditional machine learning models can be understood as special cases of neural networks. An emphasis is placed in the first two chapters on understanding the relationship between traditional machine learning and neural networks. Support vector machines, linear/logistic regression, singular value decomposition, matrix factorization, and recommender systems are shown to be special cases of neural networks. These methods are studied together with recent feature engineering methods like word2vec. Fundamentals of neural networks: A detailed discussion of training and regularization is provided in Chapters 3 and 4. Chapters 5 and 6 present radial-basis function (RBF) networks and restricted Boltzmann machines. Advanced topics in neural networks: Chapters 7 and 8 discuss recurrent neural networks and convolutional neural networks. Several advanced topics like deep reinforcement learning, neural Turing machines, Kohonen self-organizing maps, and generative adversarial networks are introduced in Chapters 9 and 10. The book is written for graduate students, researchers, and practitioners. Numerous exercises are available along with a solution manual to aid in classroom teaching. Where possible, an application-centric view is highlighted in order to provide an understanding of the practical uses of each class of techniques.