SENTIMENT ANALYSIS OF ENGLISH TWEETS USING DATA MINING

SENTIMENT ANALYSIS OF ENGLISH TWEETS USING DATA MINING PDF Author: Dr. Gaurav Gupta
Publisher: BookRix
ISBN: 3743852535
Category : Technology & Engineering
Languages : en
Pages : 76

Book Description
Due to the popularity of internet it becomes very easy for people to share their views over social networking websites. Most popular website among them is twitter. Twitter is a widely used social networking website that is used by the numerous people to give their opinion regarding a particular topic or product. So, today it becomes necessary to analyze the tweet of the people. The process to analyze and interpret the tweets is known as sentiment analysis. The main motive of this project is to identify how the tweets on the social networking website are used to identify the opinion of people regarding the particular product or policy. Twitter is a online website that allows the user to post the status of maximum 140 characters. Twitter has over 200 million registered users and 100 million active users [34]. So it comes to be a great source of valuable information. This project aims to develop a better way for sentiment analysis which is nothing a simple way to classify the tweets into positive, negative or neutral. The result of the sentiment analysis can be used by various organizations. Sentiment analysis can be used for forecasting the stock exchange, used to predict the popularity of any product in market, or used to predict the result of elections based on the public views on the social sites. The main motive of project is to develop a better way to accurately classify the unknown tweets according to their content.

Text Mining with R

Text Mining with R PDF Author: Julia Silge
Publisher: "O'Reilly Media, Inc."
ISBN: 1491981628
Category : Computers
Languages : en
Pages : 193

Book Description
Chapter 7. Case Study : Comparing Twitter Archives; Getting the Data and Distribution of Tweets; Word Frequencies; Comparing Word Usage; Changes in Word Use; Favorites and Retweets; Summary; Chapter 8. Case Study : Mining NASA Metadata; How Data Is Organized at NASA; Wrangling and Tidying the Data; Some Initial Simple Exploration; Word Co-ocurrences and Correlations; Networks of Description and Title Words; Networks of Keywords; Calculating tf-idf for the Description Fields; What Is tf-idf for the Description Field Words?; Connecting Description Fields to Keywords; Topic Modeling.

Data Mining Approaches for Big Data and Sentiment Analysis in Social Media

Data Mining Approaches for Big Data and Sentiment Analysis in Social Media PDF Author: Brij Gupta
Publisher:
ISBN: 9781799884132
Category : Big data
Languages : en
Pages : 336

Book Description
"This book explores the key concepts of data mining and utilizing them on online social media platforms, offering valuable insight into data mining approaches for big data and sentiment analysis in online social media and covering many important security and other aspects and current trends"--

Introduction to Data Science

Introduction to Data Science PDF Author: Rafael A. Irizarry
Publisher: CRC Press
ISBN: 1000708039
Category : Mathematics
Languages : en
Pages : 836

Book Description
Introduction to Data Science: Data Analysis and Prediction Algorithms with R introduces concepts and skills that can help you tackle real-world data analysis challenges. It covers concepts from probability, statistical inference, linear regression, and machine learning. It also helps you develop skills such as R programming, data wrangling, data visualization, predictive algorithm building, file organization with UNIX/Linux shell, version control with Git and GitHub, and reproducible document preparation. This book is a textbook for a first course in data science. No previous knowledge of R is necessary, although some experience with programming may be helpful. The book is divided into six parts: R, data visualization, statistics with R, data wrangling, machine learning, and productivity tools. Each part has several chapters meant to be presented as one lecture. The author uses motivating case studies that realistically mimic a data scientist’s experience. He starts by asking specific questions and answers these through data analysis so concepts are learned as a means to answering the questions. Examples of the case studies included are: US murder rates by state, self-reported student heights, trends in world health and economics, the impact of vaccines on infectious disease rates, the financial crisis of 2007-2008, election forecasting, building a baseball team, image processing of hand-written digits, and movie recommendation systems. The statistical concepts used to answer the case study questions are only briefly introduced, so complementing with a probability and statistics textbook is highly recommended for in-depth understanding of these concepts. If you read and understand the chapters and complete the exercises, you will be prepared to learn the more advanced concepts and skills needed to become an expert.

Sentiment Analysis and Opinion Mining

Sentiment Analysis and Opinion Mining PDF Author: Bing Liu
Publisher: Morgan & Claypool Publishers
ISBN: 1608458849
Category : Computers
Languages : en
Pages : 185

Book Description
Sentiment analysis and opinion mining is the field of study that analyzes people's opinions, sentiments, evaluations, attitudes, and emotions from written language. It is one of the most active research areas in natural language processing and is also widely studied in data mining, Web mining, and text mining. In fact, this research has spread outside of computer science to the management sciences and social sciences due to its importance to business and society as a whole. The growing importance of sentiment analysis coincides with the growth of social media such as reviews, forum discussions, blogs, micro-blogs, Twitter, and social networks. For the first time in human history, we now have a huge volume of opinionated data recorded in digital form for analysis. Sentiment analysis systems are being applied in almost every business and social domain because opinions are central to almost all human activities and are key influencers of our behaviors. Our beliefs and perceptions of reality, and the choices we make, are largely conditioned on how others see and evaluate the world. For this reason, when we need to make a decision we often seek out the opinions of others. This is true not only for individuals but also for organizations. This book is a comprehensive introductory and survey text. It covers all important topics and the latest developments in the field with over 400 references. It is suitable for students, researchers and practitioners who are interested in social media analysis in general and sentiment analysis in particular. Lecturers can readily use it in class for courses on natural language processing, social media analysis, text mining, and data mining. Lecture slides are also available online. Table of Contents: Preface / Sentiment Analysis: A Fascinating Problem / The Problem of Sentiment Analysis / Document Sentiment Classification / Sentence Subjectivity and Sentiment Classification / Aspect-Based Sentiment Analysis / Sentiment Lexicon Generation / Opinion Summarization / Analysis of Comparative Opinions / Opinion Search and Retrieval / Opinion Spam Detection / Quality of Reviews / Concluding Remarks / Bibliography / Author Biography

Data Science in Education Using R

Data Science in Education Using R PDF Author: Ryan A. Estrellado
Publisher: Routledge
ISBN: 1000200906
Category : Education
Languages : en
Pages : 331

Book Description
Data Science in Education Using R is the go-to reference for learning data science in the education field. The book answers questions like: What does a data scientist in education do? How do I get started learning R, the popular open-source statistical programming language? And what does a data analysis project in education look like? If you’re just getting started with R in an education job, this is the book you’ll want with you. This book gets you started with R by teaching the building blocks of programming that you’ll use many times in your career. The book takes a "learn by doing" approach and offers eight analysis walkthroughs that show you a data analysis from start to finish, complete with code for you to practice with. The book finishes with how to get involved in the data science community and how to integrate data science in your education job. This book will be an essential resource for education professionals and researchers looking to increase their data analysis skills as part of their professional and academic development.

Web, Artificial Intelligence and Network Applications

Web, Artificial Intelligence and Network Applications PDF Author: Leonard Barolli
Publisher: Springer
ISBN: 3030150356
Category : Technology & Engineering
Languages : en
Pages : 1217

Book Description
The aim of the book is to provide latest research findings, innovative research results, methods and development techniques from both theoretical and practical perspectives related to the emerging areas of Web Computing, Intelligent Systems and Internet Computing. As the Web has become a major source of information, techniques and methodologies that extract quality information are of paramount importance for many Web and Internet applications. Data mining and knowledge discovery play key roles in many of today’s prominent Web applications such as e-commerce and computer security. Moreover, the outcome of Web services delivers a new platform for enabling service-oriented systems. The emergence of large scale distributed computing paradigms, such as Cloud Computing and Mobile Computing Systems, has opened many opportunities for collaboration services, which are at the core of any Information System. Artificial Intelligence (AI) is an area of computer science that build intelligent systems and algorithms that work and react like humans. The AI techniques and computational intelligence are powerful tools for learning, adaptation, reasoning and planning. They have the potential to become enabling technologies for the future intelligent networks. Recent research in the field of intelligent systems, robotics, neuroscience, artificial intelligence and cognitive sciences are very important for the future development and innovation of Web and Internet applications.

Mining the Social Web

Mining the Social Web PDF Author: Matthew Russell
Publisher: "O'Reilly Media, Inc."
ISBN: 1449388345
Category : Computers
Languages : en
Pages : 356

Book Description
Facebook, Twitter, and LinkedIn generate a tremendous amount of valuable social data, but how can you find out who's making connections with social media, what they’re talking about, or where they’re located? This concise and practical book shows you how to answer these questions and more. You'll learn how to combine social web data, analysis techniques, and visualization to help you find what you've been looking for in the social haystack, as well as useful information you didn't know existed. Each standalone chapter introduces techniques for mining data in different areas of the social Web, including blogs and email. All you need to get started is a programming background and a willingness to learn basic Python tools. Get a straightforward synopsis of the social web landscape Use adaptable scripts on GitHub to harvest data from social network APIs such as Twitter, Facebook, and LinkedIn Learn how to employ easy-to-use Python tools to slice and dice the data you collect Explore social connections in microformats with the XHTML Friends Network Apply advanced mining techniques such as TF-IDF, cosine similarity, collocation analysis, document summarization, and clique detection Build interactive visualizations with web technologies based upon HTML5 and JavaScript toolkits "Let Matthew Russell serve as your guide to working with social data sets old (email, blogs) and new (Twitter, LinkedIn, Facebook). Mining the Social Web is a natural successor to Programming Collective Intelligence: a practical, hands-on approach to hacking on data from the social Web with Python." --Jeff Hammerbacher, Chief Scientist, Cloudera "A rich, compact, useful, practical introduction to a galaxy of tools, techniques, and theories for exploring structured and unstructured data." --Alex Martelli, Senior Staff Engineer, Google

Artificial Intelligence: Theory and Applications

Artificial Intelligence: Theory and Applications PDF Author: Harish Sharma
Publisher: Springer Nature
ISBN: 9819984769
Category :
Languages : en
Pages : 495

Book Description


Web Data Mining

Web Data Mining PDF Author: Bing Liu
Publisher: Springer Science & Business Media
ISBN: 3642194605
Category : Computers
Languages : en
Pages : 637

Book Description
Liu has written a comprehensive text on Web mining, which consists of two parts. The first part covers the data mining and machine learning foundations, where all the essential concepts and algorithms of data mining and machine learning are presented. The second part covers the key topics of Web mining, where Web crawling, search, social network analysis, structured data extraction, information integration, opinion mining and sentiment analysis, Web usage mining, query log mining, computational advertising, and recommender systems are all treated both in breadth and in depth. His book thus brings all the related concepts and algorithms together to form an authoritative and coherent text. The book offers a rich blend of theory and practice. It is suitable for students, researchers and practitioners interested in Web mining and data mining both as a learning text and as a reference book. Professors can readily use it for classes on data mining, Web mining, and text mining. Additional teaching materials such as lecture slides, datasets, and implemented algorithms are available online.