Semilinear Schrodinger Equations PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Semilinear Schrodinger Equations PDF full book. Access full book title Semilinear Schrodinger Equations by Thierry Cazenave. Download full books in PDF and EPUB format.

Semilinear Schrodinger Equations

Semilinear Schrodinger Equations PDF Author: Thierry Cazenave
Publisher: American Mathematical Soc.
ISBN: 0821833995
Category : Mathematics
Languages : en
Pages : 346

Book Description
The nonlinear Schrodinger equation has received a great deal of attention from mathematicians, particularly because of its applications to nonlinear optics. This book presents various mathematical aspects of the nonlinear Schrodinger equation. It studies both problems of local nature and problems of global nature.

Semilinear Schrodinger Equations

Semilinear Schrodinger Equations PDF Author: Thierry Cazenave
Publisher: American Mathematical Soc.
ISBN: 0821833995
Category : Mathematics
Languages : en
Pages : 346

Book Description
The nonlinear Schrodinger equation has received a great deal of attention from mathematicians, particularly because of its applications to nonlinear optics. This book presents various mathematical aspects of the nonlinear Schrodinger equation. It studies both problems of local nature and problems of global nature.

Wigner Measure and Semiclassical Limits of Nonlinear Schrödinger Equations

Wigner Measure and Semiclassical Limits of Nonlinear Schrödinger Equations PDF Author: Ping Zhang
Publisher: American Mathematical Soc.
ISBN: 9780821883563
Category : Mathematics
Languages : en
Pages : 212

Book Description
"This book is based on a course entitled "Wigner measures and semiclassical limits of nonlinear Schrodinger equations," which the author taught at the Courant Institute of Mathematical Sciences at New York University in the spring of 2007. The author's main purpose is to apply the theory of semiclassical pseudodifferential operators to the study of various high-frequency limits of equations from quantum mechanics. In particular, the focus of attention is on Wigner measure and recent progress on how to use it as a tool to study various problems arising from semiclassical limits of Schrodinger-type equations." "At the end of each chapter, the reader will find references and remarks about recent progress on related problems. The book is self-contained and is suitable for an advanced graduate course on the topic."--BOOK JACKET.

Semi-classical Analysis For Nonlinear Schrodinger Equations: Wkb Analysis, Focal Points, Coherent States (Second Edition)

Semi-classical Analysis For Nonlinear Schrodinger Equations: Wkb Analysis, Focal Points, Coherent States (Second Edition) PDF Author: Remi Carles
Publisher: World Scientific
ISBN: 9811227926
Category : Mathematics
Languages : en
Pages : 367

Book Description
The second edition of this book consists of three parts. The first one is dedicated to the WKB methods and the semi-classical limit before the formation of caustics. The second part treats the semi-classical limit in the presence of caustics, in the special geometric case where the caustic is reduced to a point (or to several isolated points). The third part is new in this edition, and addresses the nonlinear propagation of coherent states. The three parts are essentially independent.Compared with the first edition, the first part is enriched by a new section on multiphase expansions in the case of weakly nonlinear geometric optics, and an application related to this study, concerning instability results for nonlinear Schrödinger equations in negative order Sobolev spaces.The third part is an overview of results concerning nonlinear effects in the propagation of coherent states, in the case of a power nonlinearity, and in the richer case of Hartree-like nonlinearities. It includes explicit formulas of an independent interest, such as generalized Mehler's formula, generalized lens transform.

An Introduction to Semilinear Evolution Equations

An Introduction to Semilinear Evolution Equations PDF Author: Thierry Cazenave
Publisher: Oxford University Press
ISBN: 9780198502777
Category : Computers
Languages : en
Pages : 204

Book Description
This book presents in a self-contained form the typical basic properties of solutions to semilinear evolutionary partial differential equations, with special emphasis on global properties. It has a didactic ambition and will be useful for an applied readership as well as theoretical researchers.

Introduction to Nonlinear Dispersive Equations

Introduction to Nonlinear Dispersive Equations PDF Author: Felipe Linares
Publisher: Springer
ISBN: 1493921819
Category : Mathematics
Languages : en
Pages : 308

Book Description
This textbook introduces the well-posedness theory for initial-value problems of nonlinear, dispersive partial differential equations, with special focus on two key models, the Korteweg–de Vries equation and the nonlinear Schrödinger equation. A concise and self-contained treatment of background material (the Fourier transform, interpolation theory, Sobolev spaces, and the linear Schrödinger equation) prepares the reader to understand the main topics covered: the initial-value problem for the nonlinear Schrödinger equation and the generalized Korteweg–de Vries equation, properties of their solutions, and a survey of general classes of nonlinear dispersive equations of physical and mathematical significance. Each chapter ends with an expert account of recent developments and open problems, as well as exercises. The final chapter gives a detailed exposition of local well-posedness for the nonlinear Schrödinger equation, taking the reader to the forefront of recent research. The second edition of Introduction to Nonlinear Dispersive Equations builds upon the success of the first edition by the addition of updated material on the main topics, an expanded bibliography, and new exercises. Assuming only basic knowledge of complex analysis and integration theory, this book will enable graduate students and researchers to enter this actively developing field.

The Nonlinear Schrödinger Equation

The Nonlinear Schrödinger Equation PDF Author: Catherine Sulem
Publisher: Springer Science & Business Media
ISBN: 0387227687
Category : Mathematics
Languages : en
Pages : 363

Book Description
Filling the gap between the mathematical literature and applications to domains, the authors have chosen to address the problem of wave collapse by several methods ranging from rigorous mathematical analysis to formal aymptotic expansions and numerical simulations.

Analysis, Probability, Applications, and Computation

Analysis, Probability, Applications, and Computation PDF Author: Karl‐Olof Lindahl
Publisher: Springer
ISBN: 3030044599
Category : Mathematics
Languages : en
Pages : 540

Book Description
This book is a collection of short papers from the 11th International ISAAC Congress 2017 in Växjö, Sweden. The papers, written by the best international experts, are devoted to recent results in mathematics with a focus on analysis. The volume provides to both specialists and non-specialists an excellent source of information on the current research in mathematical analysis and its various interdisciplinary applications.

Global Dynamics Above the Ground State Energy for the Combined Power-Type Nonlinear Schrödinger Equations with Energy-Critical Growth at Low Frequencies

Global Dynamics Above the Ground State Energy for the Combined Power-Type Nonlinear Schrödinger Equations with Energy-Critical Growth at Low Frequencies PDF Author: Takafumi Akahori
Publisher: American Mathematical Society
ISBN: 1470448726
Category : Mathematics
Languages : en
Pages : 130

Book Description
View the abstract.

Geometric Asymptotics

Geometric Asymptotics PDF Author: Victor Guillemin
Publisher: American Mathematical Soc.
ISBN: 0821816330
Category : Mathematics
Languages : en
Pages : 500

Book Description
Symplectic geometry and the theory of Fourier integral operators are modern manifestations of themes that have occupied a central position in mathematical thought for the past three hundred years--the relations between the wave and the corpuscular theories of light. The purpose of this book is to develop these themes, and present some of the recent advances, using the language of differential geometry as a unifying influence.

Methods for Partial Differential Equations

Methods for Partial Differential Equations PDF Author: Marcelo R. Ebert
Publisher: Birkhäuser
ISBN: 3319664565
Category : Mathematics
Languages : en
Pages : 473

Book Description
This book provides an overview of different topics related to the theory of partial differential equations. Selected exercises are included at the end of each chapter to prepare readers for the “research project for beginners” proposed at the end of the book. It is a valuable resource for advanced graduates and undergraduate students who are interested in specializing in this area. The book is organized in five parts: In Part 1 the authors review the basics and the mathematical prerequisites, presenting two of the most fundamental results in the theory of partial differential equations: the Cauchy-Kovalevskaja theorem and Holmgren's uniqueness theorem in its classical and abstract form. It also introduces the method of characteristics in detail and applies this method to the study of Burger's equation. Part 2 focuses on qualitative properties of solutions to basic partial differential equations, explaining the usual properties of solutions to elliptic, parabolic and hyperbolic equations for the archetypes Laplace equation, heat equation and wave equation as well as the different features of each theory. It also discusses the notion of energy of solutions, a highly effective tool for the treatment of non-stationary or evolution models and shows how to define energies for different models. Part 3 demonstrates how phase space analysis and interpolation techniques are used to prove decay estimates for solutions on and away from the conjugate line. It also examines how terms of lower order (mass or dissipation) or additional regularity of the data may influence expected results. Part 4 addresses semilinear models with power type non-linearity of source and absorbing type in order to determine critical exponents: two well-known critical exponents, the Fujita exponent and the Strauss exponent come into play. Depending on concrete models these critical exponents divide the range of admissible powers in classes which make it possible to prove quite different qualitative properties of solutions, for example, the stability of the zero solution or blow-up behavior of local (in time) solutions. The last part features selected research projects and general background material.