Author: Simon M. Sze
Publisher: John Wiley & Sons
ISBN: 0470068302
Category : Technology & Engineering
Languages : en
Pages : 828
Book Description
The Third Edition of the standard textbook and reference in the field of semiconductor devices This classic book has set the standard for advanced study and reference in the semiconductor device field. Now completely updated and reorganized to reflect the tremendous advances in device concepts and performance, this Third Edition remains the most detailed and exhaustive single source of information on the most important semiconductor devices. It gives readers immediate access to detailed descriptions of the underlying physics and performance characteristics of all major bipolar, field-effect, microwave, photonic, and sensor devices. Designed for graduate textbook adoptions and reference needs, this new edition includes: A complete update of the latest developments New devices such as three-dimensional MOSFETs, MODFETs, resonant-tunneling diodes, semiconductor sensors, quantum-cascade lasers, single-electron transistors, real-space transfer devices, and more Materials completely reorganized Problem sets at the end of each chapter All figures reproduced at the highest quality Physics of Semiconductor Devices, Third Edition offers engineers, research scientists, faculty, and students a practical basis for understanding the most important devices in use today and for evaluating future device performance and limitations. A Solutions Manual is available from the editorial department.
Physics of Semiconductor Devices
Author: Simon M. Sze
Publisher: John Wiley & Sons
ISBN: 0470068302
Category : Technology & Engineering
Languages : en
Pages : 828
Book Description
The Third Edition of the standard textbook and reference in the field of semiconductor devices This classic book has set the standard for advanced study and reference in the semiconductor device field. Now completely updated and reorganized to reflect the tremendous advances in device concepts and performance, this Third Edition remains the most detailed and exhaustive single source of information on the most important semiconductor devices. It gives readers immediate access to detailed descriptions of the underlying physics and performance characteristics of all major bipolar, field-effect, microwave, photonic, and sensor devices. Designed for graduate textbook adoptions and reference needs, this new edition includes: A complete update of the latest developments New devices such as three-dimensional MOSFETs, MODFETs, resonant-tunneling diodes, semiconductor sensors, quantum-cascade lasers, single-electron transistors, real-space transfer devices, and more Materials completely reorganized Problem sets at the end of each chapter All figures reproduced at the highest quality Physics of Semiconductor Devices, Third Edition offers engineers, research scientists, faculty, and students a practical basis for understanding the most important devices in use today and for evaluating future device performance and limitations. A Solutions Manual is available from the editorial department.
Publisher: John Wiley & Sons
ISBN: 0470068302
Category : Technology & Engineering
Languages : en
Pages : 828
Book Description
The Third Edition of the standard textbook and reference in the field of semiconductor devices This classic book has set the standard for advanced study and reference in the semiconductor device field. Now completely updated and reorganized to reflect the tremendous advances in device concepts and performance, this Third Edition remains the most detailed and exhaustive single source of information on the most important semiconductor devices. It gives readers immediate access to detailed descriptions of the underlying physics and performance characteristics of all major bipolar, field-effect, microwave, photonic, and sensor devices. Designed for graduate textbook adoptions and reference needs, this new edition includes: A complete update of the latest developments New devices such as three-dimensional MOSFETs, MODFETs, resonant-tunneling diodes, semiconductor sensors, quantum-cascade lasers, single-electron transistors, real-space transfer devices, and more Materials completely reorganized Problem sets at the end of each chapter All figures reproduced at the highest quality Physics of Semiconductor Devices, Third Edition offers engineers, research scientists, faculty, and students a practical basis for understanding the most important devices in use today and for evaluating future device performance and limitations. A Solutions Manual is available from the editorial department.
Principles of Semiconductor Devices
Author: Sima Dimitrijev
Publisher: Oxford University Press, USA
ISBN: 9780195388039
Category : TECHNOLOGY & ENGINEERING
Languages : en
Pages : 0
Book Description
"This dynamic text applies physics concepts and equations to practical, real-world applications of semiconductor device theory"-- Provided by publisher.
Publisher: Oxford University Press, USA
ISBN: 9780195388039
Category : TECHNOLOGY & ENGINEERING
Languages : en
Pages : 0
Book Description
"This dynamic text applies physics concepts and equations to practical, real-world applications of semiconductor device theory"-- Provided by publisher.
SEMICONDUCTOR DEVICES: PHYSICS AND TECHNOLOGY, 2ND ED
Author: S.M.Sze
Publisher: John Wiley & Sons
ISBN: 9788126516810
Category :
Languages : en
Pages : 576
Book Description
Market_Desc: · Electrical Engineers· Scientists Special Features: · Provides strong coverage of all key semiconductor devices. Includes basic physics and material properties of key semiconductors· Covers all important processing technologies About The Book: This book is an introduction to the physical principles of modern semiconductor devices and their advanced fabrication technology. It begins with a brief historical review of major devices and key technologies and is then divided into three sections: semiconductor material properties, physics of semiconductor devices and processing technology to fabricate these semiconductor devices.
Publisher: John Wiley & Sons
ISBN: 9788126516810
Category :
Languages : en
Pages : 576
Book Description
Market_Desc: · Electrical Engineers· Scientists Special Features: · Provides strong coverage of all key semiconductor devices. Includes basic physics and material properties of key semiconductors· Covers all important processing technologies About The Book: This book is an introduction to the physical principles of modern semiconductor devices and their advanced fabrication technology. It begins with a brief historical review of major devices and key technologies and is then divided into three sections: semiconductor material properties, physics of semiconductor devices and processing technology to fabricate these semiconductor devices.
Complete Guide to Semiconductor Devices
Author: Kwok K. Ng
Publisher: Wiley-IEEE Press
ISBN: 9780471202400
Category : Technology & Engineering
Languages : en
Pages : 768
Book Description
A definitive and up-to-date handbook of semiconductor devices Semiconductor devices, the basic components of integrated circuits, are responsible for the rapid growth of the electronics industry over the past fifty years. Because there is a growing need for faster and more complex systems for the information age, existing semiconductor devices are constantly being studied for improvement, and new ones are being continually invented. As a result, a large number of types and variations of devices are available in the literature. The Second Edition of this unique engineering guide continues to be the only available complete collection of semiconductor devices, identifying 74 major devices and more than 200 variations of these devices. As in the First Edition, the value of this text lies in its comprehensive, yet highly readable presentation and its easy-to-use format, making it suitable for a wide range of audiences. Essential information is presented for a quick, balanced overview Each chapter is designed to cover only one specific device, for easy and focused reference Each device is discussed in detail, always including its history, its structure, its characteristics, and its applications The Second Edition has been significantly updated with eight new chapters, and the material rearranged to reflect recent developments in the field. As such, it remains an ideal reference source for graduate students who want a quick survey of the field, as well as for practitioners and researchers who need quick access to basic information, and a valuable pragmatic handbook for salespeople, lawyers, and anyone associated with the semiconductor industry.
Publisher: Wiley-IEEE Press
ISBN: 9780471202400
Category : Technology & Engineering
Languages : en
Pages : 768
Book Description
A definitive and up-to-date handbook of semiconductor devices Semiconductor devices, the basic components of integrated circuits, are responsible for the rapid growth of the electronics industry over the past fifty years. Because there is a growing need for faster and more complex systems for the information age, existing semiconductor devices are constantly being studied for improvement, and new ones are being continually invented. As a result, a large number of types and variations of devices are available in the literature. The Second Edition of this unique engineering guide continues to be the only available complete collection of semiconductor devices, identifying 74 major devices and more than 200 variations of these devices. As in the First Edition, the value of this text lies in its comprehensive, yet highly readable presentation and its easy-to-use format, making it suitable for a wide range of audiences. Essential information is presented for a quick, balanced overview Each chapter is designed to cover only one specific device, for easy and focused reference Each device is discussed in detail, always including its history, its structure, its characteristics, and its applications The Second Edition has been significantly updated with eight new chapters, and the material rearranged to reflect recent developments in the field. As such, it remains an ideal reference source for graduate students who want a quick survey of the field, as well as for practitioners and researchers who need quick access to basic information, and a valuable pragmatic handbook for salespeople, lawyers, and anyone associated with the semiconductor industry.
Physics of Semiconductor Devices
Author: Simon M. Sze
Publisher: John Wiley & Sons
ISBN: 1119429110
Category : Technology & Engineering
Languages : en
Pages : 944
Book Description
The new edition of the most detailed and comprehensive single-volume reference on major semiconductor devices The Fourth Edition of Physics of Semiconductor Devices remains the standard reference work on the fundamental physics and operational characteristics of all major bipolar, unipolar, special microwave, and optoelectronic devices. This fully updated and expanded edition includes approximately 1,000 references to original research papers and review articles, more than 650 high-quality technical illustrations, and over two dozen tables of material parameters. Divided into five parts, the text first provides a summary of semiconductor properties, covering energy band, carrier concentration, and transport properties. The second part surveys the basic building blocks of semiconductor devices, including p-n junctions, metal-semiconductor contacts, and metal-insulator-semiconductor (MIS) capacitors. Part III examines bipolar transistors, MOSFETs (MOS field-effect transistors), and other field-effect transistors such as JFETs (junction field-effect-transistors) and MESFETs (metal-semiconductor field-effect transistors). Part IV focuses on negative-resistance and power devices. The book concludes with coverage of photonic devices and sensors, including light-emitting diodes (LEDs), solar cells, and various photodetectors and semiconductor sensors. This classic volume, the standard textbook and reference in the field of semiconductor devices: Provides the practical foundation necessary for understanding the devices currently in use and evaluating the performance and limitations of future devices Offers completely updated and revised information that reflects advances in device concepts, performance, and application Features discussions of topics of contemporary interest, such as applications of photonic devices that convert optical energy to electric energy Includes numerous problem sets, real-world examples, tables, figures, and illustrations; several useful appendices; and a detailed solutions manual for Instructor's only Explores new work on leading-edge technologies such as MODFETs, resonant-tunneling diodes, quantum-cascade lasers, single-electron transistors, real-space-transfer devices, and MOS-controlled thyristors Physics of Semiconductor Devices, Fourth Edition is an indispensable resource for design engineers, research scientists, industrial and electronics engineering managers, and graduate students in the field.
Publisher: John Wiley & Sons
ISBN: 1119429110
Category : Technology & Engineering
Languages : en
Pages : 944
Book Description
The new edition of the most detailed and comprehensive single-volume reference on major semiconductor devices The Fourth Edition of Physics of Semiconductor Devices remains the standard reference work on the fundamental physics and operational characteristics of all major bipolar, unipolar, special microwave, and optoelectronic devices. This fully updated and expanded edition includes approximately 1,000 references to original research papers and review articles, more than 650 high-quality technical illustrations, and over two dozen tables of material parameters. Divided into five parts, the text first provides a summary of semiconductor properties, covering energy band, carrier concentration, and transport properties. The second part surveys the basic building blocks of semiconductor devices, including p-n junctions, metal-semiconductor contacts, and metal-insulator-semiconductor (MIS) capacitors. Part III examines bipolar transistors, MOSFETs (MOS field-effect transistors), and other field-effect transistors such as JFETs (junction field-effect-transistors) and MESFETs (metal-semiconductor field-effect transistors). Part IV focuses on negative-resistance and power devices. The book concludes with coverage of photonic devices and sensors, including light-emitting diodes (LEDs), solar cells, and various photodetectors and semiconductor sensors. This classic volume, the standard textbook and reference in the field of semiconductor devices: Provides the practical foundation necessary for understanding the devices currently in use and evaluating the performance and limitations of future devices Offers completely updated and revised information that reflects advances in device concepts, performance, and application Features discussions of topics of contemporary interest, such as applications of photonic devices that convert optical energy to electric energy Includes numerous problem sets, real-world examples, tables, figures, and illustrations; several useful appendices; and a detailed solutions manual for Instructor's only Explores new work on leading-edge technologies such as MODFETs, resonant-tunneling diodes, quantum-cascade lasers, single-electron transistors, real-space-transfer devices, and MOS-controlled thyristors Physics of Semiconductor Devices, Fourth Edition is an indispensable resource for design engineers, research scientists, industrial and electronics engineering managers, and graduate students in the field.
Failure Mechanisms in Semiconductor Devices
Author: E. Ajith Amerasekera
Publisher: John Wiley & Sons
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 368
Book Description
Failure Mechanisms in Semiconductor Devices Second Edition E. Ajith Amerasekera Texas Instruments Inc., Dallas, USA Farid N. Najm University of Illinois at Urbana-Champaign, USA Since the successful first edition of Failure Mechanisms in Semiconductor Devices, semiconductor technology has become increasingly important. The high complexity of today's integrated circuits has engendered a demand for greater component reliability. Reflecting the need for guaranteed performance in consumer applications, this thoroughly updated edition includes more detailed material on reliability modelling and prediction. The book analyses the main failure mechanisms in terms of cause, effects and prevention and explains the mathematics behind reliability analysis. The authors detail methodologies for the identification of failures and describe the approaches for building reliability into semiconductor devices. Their thorough yet accessible text covers the physics of failure mechanisms from the semiconductor die itself to the packaging and interconnections. Incorporating recent advances, this comprehensive survey of semiconductor reliability will be an asset to both engineers and graduate students in the field.
Publisher: John Wiley & Sons
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 368
Book Description
Failure Mechanisms in Semiconductor Devices Second Edition E. Ajith Amerasekera Texas Instruments Inc., Dallas, USA Farid N. Najm University of Illinois at Urbana-Champaign, USA Since the successful first edition of Failure Mechanisms in Semiconductor Devices, semiconductor technology has become increasingly important. The high complexity of today's integrated circuits has engendered a demand for greater component reliability. Reflecting the need for guaranteed performance in consumer applications, this thoroughly updated edition includes more detailed material on reliability modelling and prediction. The book analyses the main failure mechanisms in terms of cause, effects and prevention and explains the mathematics behind reliability analysis. The authors detail methodologies for the identification of failures and describe the approaches for building reliability into semiconductor devices. Their thorough yet accessible text covers the physics of failure mechanisms from the semiconductor die itself to the packaging and interconnections. Incorporating recent advances, this comprehensive survey of semiconductor reliability will be an asset to both engineers and graduate students in the field.
Semiconductor Device Physics and Design
Author: Umesh Mishra
Publisher: Springer Science & Business Media
ISBN: 1402064802
Category : Technology & Engineering
Languages : en
Pages : 583
Book Description
Semiconductor Device Physics and Design teaches readers how to approach device design from the point of view of someone who wants to improve devices and can see the opportunity and challenges. It begins with coverage of basic physics concepts, including the physics behind polar heterostructures and strained heterostructures. The book then details the important devices ranging from p-n diodes to bipolar and field effect devices. By relating device design to device performance and then relating device needs to system use the student can see how device design works in the real world.
Publisher: Springer Science & Business Media
ISBN: 1402064802
Category : Technology & Engineering
Languages : en
Pages : 583
Book Description
Semiconductor Device Physics and Design teaches readers how to approach device design from the point of view of someone who wants to improve devices and can see the opportunity and challenges. It begins with coverage of basic physics concepts, including the physics behind polar heterostructures and strained heterostructures. The book then details the important devices ranging from p-n diodes to bipolar and field effect devices. By relating device design to device performance and then relating device needs to system use the student can see how device design works in the real world.
Semiconductor Devices, 2nd Edition
Author: John Sparkes
Publisher: CRC Press
ISBN: 9780748773824
Category : Technology & Engineering
Languages : en
Pages : 238
Book Description
Since its inception, the Tutorial Guides in Electronic Engineering series has met with great success among both instructors and students. Designed for first and second year undergraduate courses, each text provides a concise list of objectives at the beginning of every chapter, key definitions and formulas highlighted in margin notes, and references to other texts in the series. Semiconductor Devices begins with a review of the necessary basic background in semiconductor materials and what semiconductor devices are expected to do, that is, their typical applications. Then the author explains, in order of increasing complexity, the main semiconductor devices in use today, beginning with p-n junctions in their various forms and ending with integrated circuits. In doing so, he presents both the "band" model and the "bond" model of semiconductors, since neither one on its own can account for all device behavior. The final chapter introduces more recently developed technologies, particularly the use of compound instead of silicon semiconductors, and the improvement in device performance these materials make possible. True to the Tutorial Guides in Electronic Engineering series standards, Semiconductor Devices offers a clear presentation, a multitude of illustrations, and fully worked examples supported by end-of-chapter exercises and suggestions for further reading. This book provides an ideal introduction to the fundamental theoretical principles underlying the operation of semiconductor devices and to their simple and effective mathematical modelling.
Publisher: CRC Press
ISBN: 9780748773824
Category : Technology & Engineering
Languages : en
Pages : 238
Book Description
Since its inception, the Tutorial Guides in Electronic Engineering series has met with great success among both instructors and students. Designed for first and second year undergraduate courses, each text provides a concise list of objectives at the beginning of every chapter, key definitions and formulas highlighted in margin notes, and references to other texts in the series. Semiconductor Devices begins with a review of the necessary basic background in semiconductor materials and what semiconductor devices are expected to do, that is, their typical applications. Then the author explains, in order of increasing complexity, the main semiconductor devices in use today, beginning with p-n junctions in their various forms and ending with integrated circuits. In doing so, he presents both the "band" model and the "bond" model of semiconductors, since neither one on its own can account for all device behavior. The final chapter introduces more recently developed technologies, particularly the use of compound instead of silicon semiconductors, and the improvement in device performance these materials make possible. True to the Tutorial Guides in Electronic Engineering series standards, Semiconductor Devices offers a clear presentation, a multitude of illustrations, and fully worked examples supported by end-of-chapter exercises and suggestions for further reading. This book provides an ideal introduction to the fundamental theoretical principles underlying the operation of semiconductor devices and to their simple and effective mathematical modelling.
Semiconductor Devices
Author: James Fiore
Publisher:
ISBN: 9781796543537
Category :
Languages : en
Pages : 407
Book Description
Across 15 chapters, Semiconductor Devices covers the theory and application of discrete semiconductor devices including various types of diodes, bipolar junction transistors, JFETs, MOSFETs and IGBTs. Applications include rectifying, clipping, clamping, switching, small signal amplifiers and followers, and class A, B and D power amplifiers. Focusing on practical aspects of analysis and design, interpretations of device data sheets are integrated throughout the chapters. Computer simulations of circuit responses are included as well. Each chapter features a set of learning objectives, numerous sample problems, and a variety of exercises designed to hone and test circuit design and analysis skills. A companion laboratory manual is available. This is the print version of the on-line OER.
Publisher:
ISBN: 9781796543537
Category :
Languages : en
Pages : 407
Book Description
Across 15 chapters, Semiconductor Devices covers the theory and application of discrete semiconductor devices including various types of diodes, bipolar junction transistors, JFETs, MOSFETs and IGBTs. Applications include rectifying, clipping, clamping, switching, small signal amplifiers and followers, and class A, B and D power amplifiers. Focusing on practical aspects of analysis and design, interpretations of device data sheets are integrated throughout the chapters. Computer simulations of circuit responses are included as well. Each chapter features a set of learning objectives, numerous sample problems, and a variety of exercises designed to hone and test circuit design and analysis skills. A companion laboratory manual is available. This is the print version of the on-line OER.
Semiconductor Material and Device Characterization
Author: Dieter K. Schroder
Publisher: John Wiley & Sons
ISBN: 0471739065
Category : Technology & Engineering
Languages : en
Pages : 800
Book Description
This Third Edition updates a landmark text with the latest findings The Third Edition of the internationally lauded Semiconductor Material and Device Characterization brings the text fully up-to-date with the latest developments in the field and includes new pedagogical tools to assist readers. Not only does the Third Edition set forth all the latest measurement techniques, but it also examines new interpretations and new applications of existing techniques. Semiconductor Material and Device Characterization remains the sole text dedicated to characterization techniques for measuring semiconductor materials and devices. Coverage includes the full range of electrical and optical characterization methods, including the more specialized chemical and physical techniques. Readers familiar with the previous two editions will discover a thoroughly revised and updated Third Edition, including: Updated and revised figures and examples reflecting the most current data and information 260 new references offering access to the latest research and discussions in specialized topics New problems and review questions at the end of each chapter to test readers' understanding of the material In addition, readers will find fully updated and revised sections in each chapter. Plus, two new chapters have been added: Charge-Based and Probe Characterization introduces charge-based measurement and Kelvin probes. This chapter also examines probe-based measurements, including scanning capacitance, scanning Kelvin force, scanning spreading resistance, and ballistic electron emission microscopy. Reliability and Failure Analysis examines failure times and distribution functions, and discusses electromigration, hot carriers, gate oxide integrity, negative bias temperature instability, stress-induced leakage current, and electrostatic discharge. Written by an internationally recognized authority in the field, Semiconductor Material and Device Characterization remains essential reading for graduate students as well as for professionals working in the field of semiconductor devices and materials. An Instructor's Manual presenting detailed solutions to all the problems in the book is available from the Wiley editorial department.
Publisher: John Wiley & Sons
ISBN: 0471739065
Category : Technology & Engineering
Languages : en
Pages : 800
Book Description
This Third Edition updates a landmark text with the latest findings The Third Edition of the internationally lauded Semiconductor Material and Device Characterization brings the text fully up-to-date with the latest developments in the field and includes new pedagogical tools to assist readers. Not only does the Third Edition set forth all the latest measurement techniques, but it also examines new interpretations and new applications of existing techniques. Semiconductor Material and Device Characterization remains the sole text dedicated to characterization techniques for measuring semiconductor materials and devices. Coverage includes the full range of electrical and optical characterization methods, including the more specialized chemical and physical techniques. Readers familiar with the previous two editions will discover a thoroughly revised and updated Third Edition, including: Updated and revised figures and examples reflecting the most current data and information 260 new references offering access to the latest research and discussions in specialized topics New problems and review questions at the end of each chapter to test readers' understanding of the material In addition, readers will find fully updated and revised sections in each chapter. Plus, two new chapters have been added: Charge-Based and Probe Characterization introduces charge-based measurement and Kelvin probes. This chapter also examines probe-based measurements, including scanning capacitance, scanning Kelvin force, scanning spreading resistance, and ballistic electron emission microscopy. Reliability and Failure Analysis examines failure times and distribution functions, and discusses electromigration, hot carriers, gate oxide integrity, negative bias temperature instability, stress-induced leakage current, and electrostatic discharge. Written by an internationally recognized authority in the field, Semiconductor Material and Device Characterization remains essential reading for graduate students as well as for professionals working in the field of semiconductor devices and materials. An Instructor's Manual presenting detailed solutions to all the problems in the book is available from the Wiley editorial department.