Semi-supervised Learning with Side Information PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Semi-supervised Learning with Side Information PDF full book. Access full book title Semi-supervised Learning with Side Information by Yi Liu. Download full books in PDF and EPUB format.

Semi-supervised Learning with Side Information

Semi-supervised Learning with Side Information PDF Author: Yi Liu
Publisher:
ISBN:
Category : Computer science
Languages : en
Pages : 434

Book Description


Semi-supervised Learning with Side Information

Semi-supervised Learning with Side Information PDF Author: Yi Liu
Publisher:
ISBN:
Category : Computer science
Languages : en
Pages : 434

Book Description


Semi-Supervised Learning

Semi-Supervised Learning PDF Author: Olivier Chapelle
Publisher: MIT Press
ISBN: 0262514125
Category : Computers
Languages : en
Pages : 525

Book Description
A comprehensive review of an area of machine learning that deals with the use of unlabeled data in classification problems: state-of-the-art algorithms, a taxonomy of the field, applications, benchmark experiments, and directions for future research. In the field of machine learning, semi-supervised learning (SSL) occupies the middle ground, between supervised learning (in which all training examples are labeled) and unsupervised learning (in which no label data are given). Interest in SSL has increased in recent years, particularly because of application domains in which unlabeled data are plentiful, such as images, text, and bioinformatics. This first comprehensive overview of SSL presents state-of-the-art algorithms, a taxonomy of the field, selected applications, benchmark experiments, and perspectives on ongoing and future research.Semi-Supervised Learning first presents the key assumptions and ideas underlying the field: smoothness, cluster or low-density separation, manifold structure, and transduction. The core of the book is the presentation of SSL methods, organized according to algorithmic strategies. After an examination of generative models, the book describes algorithms that implement the low-density separation assumption, graph-based methods, and algorithms that perform two-step learning. The book then discusses SSL applications and offers guidelines for SSL practitioners by analyzing the results of extensive benchmark experiments. Finally, the book looks at interesting directions for SSL research. The book closes with a discussion of the relationship between semi-supervised learning and transduction.

Introduction to Semi-Supervised Learning

Introduction to Semi-Supervised Learning PDF Author: Xiaojin Geffner
Publisher: Springer Nature
ISBN: 3031015487
Category : Computers
Languages : en
Pages : 116

Book Description
Semi-supervised learning is a learning paradigm concerned with the study of how computers and natural systems such as humans learn in the presence of both labeled and unlabeled data. Traditionally, learning has been studied either in the unsupervised paradigm (e.g., clustering, outlier detection) where all the data are unlabeled, or in the supervised paradigm (e.g., classification, regression) where all the data are labeled. The goal of semi-supervised learning is to understand how combining labeled and unlabeled data may change the learning behavior, and design algorithms that take advantage of such a combination. Semi-supervised learning is of great interest in machine learning and data mining because it can use readily available unlabeled data to improve supervised learning tasks when the labeled data are scarce or expensive. Semi-supervised learning also shows potential as a quantitative tool to understand human category learning, where most of the input is self-evidently unlabeled. In this introductory book, we present some popular semi-supervised learning models, including self-training, mixture models, co-training and multiview learning, graph-based methods, and semi-supervised support vector machines. For each model, we discuss its basic mathematical formulation. The success of semi-supervised learning depends critically on some underlying assumptions. We emphasize the assumptions made by each model and give counterexamples when appropriate to demonstrate the limitations of the different models. In addition, we discuss semi-supervised learning for cognitive psychology. Finally, we give a computational learning theoretic perspective on semi-supervised learning, and we conclude the book with a brief discussion of open questions in the field. Table of Contents: Introduction to Statistical Machine Learning / Overview of Semi-Supervised Learning / Mixture Models and EM / Co-Training / Graph-Based Semi-Supervised Learning / Semi-Supervised Support Vector Machines / Human Semi-Supervised Learning / Theory and Outlook

Computer Vision -- ACCV 2012

Computer Vision -- ACCV 2012 PDF Author: Kyoung Mu Lee
Publisher: Springer
ISBN: 3642373313
Category : Computers
Languages : en
Pages : 860

Book Description
The four-volume set LNCS 7724--7727 constitutes the thoroughly refereed post-conference proceedings of the 11th Asian Conference on Computer Vision, ACCV 2012, held in Daejeon, Korea, in November 2012. The total of 226 contributions presented in these volumes was carefully reviewed and selected from 869 submissions. The papers are organized in topical sections on object detection, learning and matching; object recognition; feature, representation, and recognition; segmentation, grouping, and classification; image representation; image and video retrieval and medical image analysis; face and gesture analysis and recognition; optical flow and tracking; motion, tracking, and computational photography; video analysis and action recognition; shape reconstruction and optimization; shape from X and photometry; applications of computer vision; low-level vision and applications of computer vision.

Introduction to Semi-Supervised Learning

Introduction to Semi-Supervised Learning PDF Author: Xiaojin Zhu
Publisher: Morgan & Claypool Publishers
ISBN: 1598295489
Category : Technology & Engineering
Languages : en
Pages : 130

Book Description
Semi-supervised learning is a learning paradigm concerned with the study of how computers and natural systems such as humans learn in the presence of both labeled and unlabeled data. Traditionally, learning has been studied either in the unsupervised paradigm (e.g., clustering, outlier detection) where all the data are unlabeled, or in the supervised paradigm (e.g., classification, regression) where all the data are labeled. The goal of semi-supervised learning is to understand how combining labeled and unlabeled data may change the learning behavior, and design algorithms that take advantage of such a combination. Semi-supervised learning is of great interest in machine learning and data mining because it can use readily available unlabeled data to improve supervised learning tasks when the labeled data are scarce or expensive. Semi-supervised learning also shows potential as a quantitative tool to understand human category learning, where most of the input is self-evidently unlabeled. In this introductory book, we present some popular semi-supervised learning models, including self-training, mixture models, co-training and multiview learning, graph-based methods, and semi-supervised support vector machines. For each model, we discuss its basic mathematical formulation. The success of semi-supervised learning depends critically on some underlying assumptions. We emphasize the assumptions made by each model and give counterexamples when appropriate to demonstrate the limitations of the different models. In addition, we discuss semi-supervised learning for cognitive psychology. Finally, we give a computational learning theoretic perspective on semi-supervised learning, and we conclude the book with a brief discussion of open questions in the field. Table of Contents: Introduction to Statistical Machine Learning / Overview of Semi-Supervised Learning / Mixture Models and EM / Co-Training / Graph-Based Semi-Supervised Learning / Semi-Supervised Support Vector Machines / Human Semi-Supervised Learning / Theory and Outlook

Semisupervised Learning for Computational Linguistics

Semisupervised Learning for Computational Linguistics PDF Author: Steven Abney
Publisher: CRC Press
ISBN: 1420010808
Category : Business & Economics
Languages : en
Pages : 322

Book Description
The rapid advancement in the theoretical understanding of statistical and machine learning methods for semisupervised learning has made it difficult for nonspecialists to keep up to date in the field. Providing a broad, accessible treatment of the theory as well as linguistic applications, Semisupervised Learning for Computational Linguistics offer

Artificial Intelligence: Concepts, Methodologies, Tools, and Applications

Artificial Intelligence: Concepts, Methodologies, Tools, and Applications PDF Author: Management Association, Information Resources
Publisher: IGI Global
ISBN: 152251760X
Category : Computers
Languages : en
Pages : 3095

Book Description
Ongoing advancements in modern technology have led to significant developments in artificial intelligence. With the numerous applications available, it becomes imperative to conduct research and make further progress in this field. Artificial Intelligence: Concepts, Methodologies, Tools, and Applications provides a comprehensive overview of the latest breakthroughs and recent progress in artificial intelligence. Highlighting relevant technologies, uses, and techniques across various industries and settings, this publication is a pivotal reference source for researchers, professionals, academics, upper-level students, and practitioners interested in emerging perspectives in the field of artificial intelligence.

Face Recognition in Adverse Conditions

Face Recognition in Adverse Conditions PDF Author: De Marsico, Maria
Publisher: IGI Global
ISBN: 146665967X
Category : Computers
Languages : en
Pages : 506

Book Description
Facial recognition software has improved by leaps and bounds over the past few decades, with error rates decreasing significantly within the past ten years. Though this is true, conditions such as poor lighting, obstructions, and profile-only angles have continued to persist in preventing wholly accurate readings. Face Recognition in Adverse Conditions examines how the field of facial recognition takes these adverse conditions into account when designing more effective applications by discussing facial recognition under real world PIE variations, current applications, and the future of the field of facial recognition research. The work is intended for academics, engineers, and researchers specializing in the field of facial recognition.

Computational Materials Science

Computational Materials Science PDF Author: Feng Xiong
Publisher: Trans Tech Publications Ltd
ISBN: 3038136115
Category : Technology & Engineering
Languages : en
Pages : 2261

Book Description
Selected, peer reviewed papers from the 2011 International Conference on Computational Materials Science (CMS 2011) in April 17-18, Guangzhou, China

Emerging Research in Data Engineering Systems and Computer Communications

Emerging Research in Data Engineering Systems and Computer Communications PDF Author: P. Venkata Krishna
Publisher: Springer Nature
ISBN: 9811501351
Category : Computers
Languages : en
Pages : 675

Book Description
This book gathers selected papers presented at the 2nd International Conference on Computing, Communications and Data Engineering, held at Sri Padmavati Mahila Visvavidyalayam, Tirupati, India from 1 to 2 Feb 2019. Chiefly discussing major issues and challenges in data engineering systems and computer communications, the topics covered include wireless systems and IoT, machine learning, optimization, control, statistics, and social computing.