Semantic and Interactive Content-based Image Retrieval PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Semantic and Interactive Content-based Image Retrieval PDF full book. Access full book title Semantic and Interactive Content-based Image Retrieval by Björn Barz. Download full books in PDF and EPUB format.

Semantic and Interactive Content-based Image Retrieval

Semantic and Interactive Content-based Image Retrieval PDF Author: Björn Barz
Publisher: Cuvillier Verlag
ISBN: 3736963467
Category : Computers
Languages : en
Pages : 322

Book Description
Content-based Image Retrieval (CBIR) ist ein Verfahren zum Auffinden von Bildern in großen Datenbanken wie z. B. dem Internet anhand ihres Inhalts. Ausgehend von einem vom Nutzer bereitgestellten Anfragebild, gibt das System eine sortierte Liste ähnlicher Bilder zurück. Der Großteil moderner CBIR-Systeme vergleicht Bilder ausschließlich anhand ihrer visuellen Ähnlichkeit, d.h. dem Vorhandensein ähnlicher Texturen, Farbkompositionen etc. Jedoch impliziert visuelle Ähnlichkeit nicht zwangsläufig auch semantische Ähnlichkeit. Zum Beispiel können Bilder von Schmetterlingen und Raupen als ähnlich betrachtet werden, weil sich die Raupe irgendwann in einen Schmetterling verwandelt. Optisch haben sie jedoch nicht viel gemeinsam. Die vorliegende Arbeit stellt eine Methode vor, welche solch menschliches Vorwissen über die Semantik der Welt in Deep-Learning-Verfahren integriert. Als Quelle für dieses Wissen dienen Taxonomien, die für eine Vielzahl von Domänen verfügbar sind und hierarchische Beziehungen zwischen Konzepten kodieren (z.B., ein Pudel ist ein Hund ist ein Tier etc.). Diese hierarchiebasierten semantischen Bildmerkmale verbessern die semantische Konsistenz der CBIR-Ergebnisse im Vergleich zu herkömmlichen Repräsentationen und Merkmalen erheblich. Darüber hinaus werden drei verschiedene Mechanismen für interaktives Image Retrieval präsentiert, welche die den Anfragebildern inhärente semantische Ambiguität durch Einbezug von Benutzerfeedback auflösen. Eine der vorgeschlagenen Methoden reduziert das erforderliche Feedback mithilfe von Clustering auf einen einzigen Klick, während eine andere den Nutzer kontinuierlich involviert, indem das System aktiv nach Feedback zu denjenigen Bildern fragt, von denen der größte Erkenntnisgewinn bezüglich des Relevanzmodells erwartet wird. Die dritte Methode ermöglicht dem Benutzer die Auswahl besonders interessanter Bildbereiche zur Fokussierung der Ergebnisse. Diese Techniken liefern bereits nach wenigen Feedbackrunden deutlich relevantere Ergebnisse, was die Gesamtmenge der abgerufenen Bilder reduziert, die der Benutzer überprüfen muss, um relevante Bilder zu finden. Content-based image retrieval (CBIR) aims for finding images in large databases such as the internet based on their content. Given an exemplary query image provided by the user, the retrieval system provides a ranked list of similar images. Most contemporary CBIR systems compare images solely by means of their visual similarity, i.e., the occurrence of similar textures and the composition of colors. However, visual similarity does not necessarily coincide with semantic similarity. For example, images of butterflies and caterpillars can be considered as similar, because the caterpillar turns into a butterfly at some point in time. Visually, however, they do not have much in common. In this work, we propose to integrate such human prior knowledge about the semantics of the world into deep learning techniques. Class hierarchies serve as a source for this knowledge, which are readily available for a plethora of domains and encode is-a relationships (e.g., a poodle is a dog is an animal etc.). Our hierarchy-based semantic embeddings improve the semantic consistency of CBIR results substantially compared to conventional image representations and features. We furthermore present three different mechanisms for interactive image retrieval by incorporating user feedback to resolve the inherent semantic ambiguity present in the query image. One of the proposed methods reduces the required user feedback to a single click using clustering, while another keeps the human in the loop by actively asking for feedback regarding those images which are expected to improve the relevance model the most. The third method allows the user to select particularly interesting regions in images. These techniques yield more relevant results after a few rounds of feedback, which reduces the total amount of retrieved images the user needs to inspect to find relevant ones.

Semantic and Interactive Content-based Image Retrieval

Semantic and Interactive Content-based Image Retrieval PDF Author: Björn Barz
Publisher: Cuvillier Verlag
ISBN: 3736963467
Category : Computers
Languages : en
Pages : 322

Book Description
Content-based Image Retrieval (CBIR) ist ein Verfahren zum Auffinden von Bildern in großen Datenbanken wie z. B. dem Internet anhand ihres Inhalts. Ausgehend von einem vom Nutzer bereitgestellten Anfragebild, gibt das System eine sortierte Liste ähnlicher Bilder zurück. Der Großteil moderner CBIR-Systeme vergleicht Bilder ausschließlich anhand ihrer visuellen Ähnlichkeit, d.h. dem Vorhandensein ähnlicher Texturen, Farbkompositionen etc. Jedoch impliziert visuelle Ähnlichkeit nicht zwangsläufig auch semantische Ähnlichkeit. Zum Beispiel können Bilder von Schmetterlingen und Raupen als ähnlich betrachtet werden, weil sich die Raupe irgendwann in einen Schmetterling verwandelt. Optisch haben sie jedoch nicht viel gemeinsam. Die vorliegende Arbeit stellt eine Methode vor, welche solch menschliches Vorwissen über die Semantik der Welt in Deep-Learning-Verfahren integriert. Als Quelle für dieses Wissen dienen Taxonomien, die für eine Vielzahl von Domänen verfügbar sind und hierarchische Beziehungen zwischen Konzepten kodieren (z.B., ein Pudel ist ein Hund ist ein Tier etc.). Diese hierarchiebasierten semantischen Bildmerkmale verbessern die semantische Konsistenz der CBIR-Ergebnisse im Vergleich zu herkömmlichen Repräsentationen und Merkmalen erheblich. Darüber hinaus werden drei verschiedene Mechanismen für interaktives Image Retrieval präsentiert, welche die den Anfragebildern inhärente semantische Ambiguität durch Einbezug von Benutzerfeedback auflösen. Eine der vorgeschlagenen Methoden reduziert das erforderliche Feedback mithilfe von Clustering auf einen einzigen Klick, während eine andere den Nutzer kontinuierlich involviert, indem das System aktiv nach Feedback zu denjenigen Bildern fragt, von denen der größte Erkenntnisgewinn bezüglich des Relevanzmodells erwartet wird. Die dritte Methode ermöglicht dem Benutzer die Auswahl besonders interessanter Bildbereiche zur Fokussierung der Ergebnisse. Diese Techniken liefern bereits nach wenigen Feedbackrunden deutlich relevantere Ergebnisse, was die Gesamtmenge der abgerufenen Bilder reduziert, die der Benutzer überprüfen muss, um relevante Bilder zu finden. Content-based image retrieval (CBIR) aims for finding images in large databases such as the internet based on their content. Given an exemplary query image provided by the user, the retrieval system provides a ranked list of similar images. Most contemporary CBIR systems compare images solely by means of their visual similarity, i.e., the occurrence of similar textures and the composition of colors. However, visual similarity does not necessarily coincide with semantic similarity. For example, images of butterflies and caterpillars can be considered as similar, because the caterpillar turns into a butterfly at some point in time. Visually, however, they do not have much in common. In this work, we propose to integrate such human prior knowledge about the semantics of the world into deep learning techniques. Class hierarchies serve as a source for this knowledge, which are readily available for a plethora of domains and encode is-a relationships (e.g., a poodle is a dog is an animal etc.). Our hierarchy-based semantic embeddings improve the semantic consistency of CBIR results substantially compared to conventional image representations and features. We furthermore present three different mechanisms for interactive image retrieval by incorporating user feedback to resolve the inherent semantic ambiguity present in the query image. One of the proposed methods reduces the required user feedback to a single click using clustering, while another keeps the human in the loop by actively asking for feedback regarding those images which are expected to improve the relevance model the most. The third method allows the user to select particularly interesting regions in images. These techniques yield more relevant results after a few rounds of feedback, which reduces the total amount of retrieved images the user needs to inspect to find relevant ones.

Handbook on Neural Information Processing

Handbook on Neural Information Processing PDF Author: Monica Bianchini
Publisher: Springer Science & Business Media
ISBN: 3642366570
Category : Technology & Engineering
Languages : en
Pages : 547

Book Description
This handbook presents some of the most recent topics in neural information processing, covering both theoretical concepts and practical applications. The contributions include: Deep architectures Recurrent, recursive, and graph neural networks Cellular neural networks Bayesian networks Approximation capabilities of neural networks Semi-supervised learning Statistical relational learning Kernel methods for structured data Multiple classifier systems Self organisation and modal learning Applications to content-based image retrieval, text mining in large document collections, and bioinformatics This book is thought particularly for graduate students, researchers and practitioners, willing to deepen their knowledge on more advanced connectionist models and related learning paradigms.

Quantum Models of Cognition and Decision

Quantum Models of Cognition and Decision PDF Author: Jerome R. Busemeyer
Publisher: Cambridge University Press
ISBN: 110701199X
Category : Business & Economics
Languages : en
Pages : 425

Book Description
Introduces principles drawn from quantum theory to present a new framework for modeling human cognition and decision.

The Geometry of Information Retrieval

The Geometry of Information Retrieval PDF Author: C. J. van Rijsbergen
Publisher: Cambridge University Press
ISBN: 9780521838054
Category : Computers
Languages : en
Pages : 178

Book Description
An important work on a new framework for information retrieval: implications for artificial intelligence, natural language processing.

Proceedings of the International Conference on Frontiers of Intelligent Computing: Theory and Applications (FICTA) 2013

Proceedings of the International Conference on Frontiers of Intelligent Computing: Theory and Applications (FICTA) 2013 PDF Author: Suresh Chandra Satapathy
Publisher: Springer Science & Business Media
ISBN: 3319029312
Category : Technology & Engineering
Languages : en
Pages : 553

Book Description
This volume contains the papers presented at the Second International Conference on Frontiers in Intelligent Computing: Theory and Applications (FICTA-2013) held during 14-16 November 2013 organized by Bhubaneswar Engineering College (BEC), Bhubaneswar, Odisha, India. It contains 63 papers focusing on application of intelligent techniques which includes evolutionary computation techniques like genetic algorithm, particle swarm optimization techniques, teaching-learning based optimization etc for various engineering applications such as data mining, Fuzzy systems, Machine Intelligence and ANN, Web technologies and Multimedia applications and Intelligent computing and Networking etc.

Case-Based Reasoning on Images and Signals

Case-Based Reasoning on Images and Signals PDF Author: Petra Perner
Publisher: Springer Science & Business Media
ISBN: 3540731784
Category : Computers
Languages : en
Pages : 442

Book Description
This book is the ?rst edited book that deals with the special topic of signals and images within case-based reasoning (CBR). Signal-interpreting systems are becoming increasingly popular in medical, industrial, ecological, biotechnological and many other applications. Existing statisticalandknowledge-basedtechniqueslackrobustness,accuracy,and?- ibility. New strategies are needed that can adapt to changing environmental conditions, signal variation, user needs and process requirements. Introducing CBRstrategiesintosignal-interpretingsystemscansatisfytheserequirements. CBR can be used to control the signal-processing process in all phases of a signal-interpreting system to derive information of the highest possible qu- ity. Beyond this CBR o?ers di?erent learning capabilities, for all phases of a signal-interpretingsystem,thatsatisfydi?erentneedsduringthedevelopment process of a signal-interpreting system. In the outline of this book we summarize under the term “signal” signals of 1-dimensional, 2-dimensional or 3-dimensional nature. The unique data and the necessary computation techniques require ext- ordinary case representations, similarity measures and CBR strategies to be utilised. Signalinterpretation(1D,2D,or3Dsignalinterpretation)istheprocessof mapping the numerical representation of a signal into logical representations suitable for signal descriptions. A signal-interpreting system must be able to extract symbolic features from the raw data e.g., the image (e.g., irregular structure inside the nodule, area of calci?cation, and sharp margin). This is a complex process; the signal passes through several general processing steps before the ?nal symbolic description is obtained. The structure of the book is divided into a theoretical part and into an application-oriented part.

Concept-Based Video Retrieval

Concept-Based Video Retrieval PDF Author: Cees G. M. Snoek
Publisher: Now Publishers Inc
ISBN: 1601982348
Category : Database management
Languages : en
Pages : 123

Book Description
In this paper, we review 300 references on video retrieval, indicating when text-only solutions are unsatisfactory and showing the promising alternatives which are in majority concept-based. Therefore, central to our discussion is the notion of a semantic concept: an objective linguistic description of an observable entity. Specifically, we present our view on how its automated detection, selection under uncertainty, and interactive usage might solve the major scientific problem for video retrieval: the semantic gap. To bridge the gap, we lay down the anatomy of a concept-based video search engine. We present a component-wise decomposition of such an interdisciplinary multimedia system, covering influences from information retrieval, computer vision, machine learning, and human-computer interaction. For each of the components we review state-of-the-art solutions in the literature, each having different characteristics and merits. Because of these differences, we cannot understand the progress in video retrieval without serious evaluation efforts such as carried out in the NIST TRECVID benchmark. We discuss its data, tasks, results, and the many derived community initiatives in creating annotations and baselines for repeatable experiments. We conclude with our perspective on future challenges and opportunities.

Digital Libraries: Technology and Management of Indigenous Knowledge for Global Access

Digital Libraries: Technology and Management of Indigenous Knowledge for Global Access PDF Author: Tengku Mohd. T. Sembok
Publisher: Springer
ISBN: 3540245944
Category : Language Arts & Disciplines
Languages : en
Pages : 723

Book Description
This book constitutes the refereed proceedings of the 6th International Conference on Asian Digital Libraries, ICADL 2003, held in Kuala Lumpur, Malaysia in December 2003. The 68 revised full papers presented together with 15 poster abstracts and 3 invited papers were carefully reviewed from numerous submissions. The papers are organized in topical sections on information retrieval techniques, multimedia digital libraries, data mining and digital libraries, machine architecture and organization, human resources and training, human-computer interaction, digital library infrastructure, building and using digital libraries, knowledge management, intellectual property rights and copyright, e-learning and mobile learning, data storage and retrieval, digital library services, content development, information retrieval and Asian languages, and metadata.

Advances in Multimedia Information Processing — PCM 2001

Advances in Multimedia Information Processing — PCM 2001 PDF Author: Heung-Yeung Shum
Publisher: Springer
ISBN: 3540454535
Category : Computers
Languages : en
Pages : 1171

Book Description
Welcome to the second IEEE Pacific Rim Conference on Multimedia (IEEE PCM 2001) held in Zhongguanchun, Beijing, China, October 22 24, 2001. Building upon the success of the inaugural IEEE PCM 2000 in Sydney in December 2000, the second PCM again brought together the researchers, developers, practitioners, and educators of multimedia in the Pacific area. Theoretical breakthroughs and practical systems were presented at this conference, thanks to the sponsorship by the IEEE Circuit and Systems Society, IEEE Signal Processing Society, China Computer Foundation, China Society of Image and Graphics, National Natural Science Foundation of China, Tsinghua University, and Microsoft Research, China. IEEE PCM 2001 featured a comprehensive program including keynote talks, regular paper presentations, posters, demos, and special sessions. We received 244 papers and accepted only 104 of them as regular papers, and 53 as poster papers. Our special session chairs, Shin'ichi Satoh and Mohan Kankanhalli, organized 6 special sessions. We acknowledge the great contribution from our program committee members and paper reviewers who spent many hours reviewing submitted papers and providing valuable comments for the authors. The conference would not have been successful without the help of so many people. We greatly appreciated the support of our honorary chairs: Prof. Sun Yuan Kung of Princeton University, Dr. Ya Qin Zhang of Microsoft Research China, and Prof.

Image and Video Retrieval

Image and Video Retrieval PDF Author: Peter Enser
Publisher: Springer
ISBN: 3540278141
Category : Computers
Languages : en
Pages : 694

Book Description
This book constitutes the refereed proceedings of the Third International Conference on Image and Video Retrieval, CIVR 2004, held in Dublin, Ireland in July 2004. The 31 revised full papers and 44 poster papers presented were carefully reviewed and selected from 125 submissions. The papers are organized in topical sections on image annotation and user searching, image and video retrieval algorithms, person and event identification for retrieval, content-based image and video retrieval, and user perspectives.