Self-Learning Optimal Control of Nonlinear Systems PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Self-Learning Optimal Control of Nonlinear Systems PDF full book. Access full book title Self-Learning Optimal Control of Nonlinear Systems by Qinglai Wei. Download full books in PDF and EPUB format.

Self-Learning Optimal Control of Nonlinear Systems

Self-Learning Optimal Control of Nonlinear Systems PDF Author: Qinglai Wei
Publisher: Springer
ISBN: 981104080X
Category : Technology & Engineering
Languages : en
Pages : 242

Book Description
This book presents a class of novel, self-learning, optimal control schemes based on adaptive dynamic programming techniques, which quantitatively obtain the optimal control schemes of the systems. It analyzes the properties identified by the programming methods, including the convergence of the iterative value functions and the stability of the system under iterative control laws, helping to guarantee the effectiveness of the methods developed. When the system model is known, self-learning optimal control is designed on the basis of the system model; when the system model is not known, adaptive dynamic programming is implemented according to the system data, effectively making the performance of the system converge to the optimum. With various real-world examples to complement and substantiate the mathematical analysis, the book is a valuable guide for engineers, researchers, and students in control science and engineering.

Self-Learning Optimal Control of Nonlinear Systems

Self-Learning Optimal Control of Nonlinear Systems PDF Author: Qinglai Wei
Publisher: Springer
ISBN: 981104080X
Category : Technology & Engineering
Languages : en
Pages : 242

Book Description
This book presents a class of novel, self-learning, optimal control schemes based on adaptive dynamic programming techniques, which quantitatively obtain the optimal control schemes of the systems. It analyzes the properties identified by the programming methods, including the convergence of the iterative value functions and the stability of the system under iterative control laws, helping to guarantee the effectiveness of the methods developed. When the system model is known, self-learning optimal control is designed on the basis of the system model; when the system model is not known, adaptive dynamic programming is implemented according to the system data, effectively making the performance of the system converge to the optimum. With various real-world examples to complement and substantiate the mathematical analysis, the book is a valuable guide for engineers, researchers, and students in control science and engineering.

Nonlinear and Optimal Control Systems

Nonlinear and Optimal Control Systems PDF Author: Thomas L. Vincent
Publisher: John Wiley & Sons
ISBN: 9780471042358
Category : Science
Languages : en
Pages : 584

Book Description
Designed for one-semester introductory senior-or graduate-level course, the authors provide the student with an introduction of analysis techniques used in the design of nonlinear and optimal feedback control systems. There is special emphasis on the fundamental topics of stability, controllability, and optimality, and on the corresponding geometry associated with these topics. Each chapter contains several examples and a variety of exercises.

Self-organizing and Optimal Control for Nonlinear Systems

Self-organizing and Optimal Control for Nonlinear Systems PDF Author: Wenjie Dong
Publisher:
ISBN:
Category : Electronics in transportation
Languages : en
Pages : 87

Book Description
Vehicle formation control is one of important research topics in transportation. Control of uncertain nonlinear systems is one of fundamental problems in vehicle control. In this dissertation, we consider this fundamental control problem. Specially, we considered self-organizing based tracking control of uncertain nonaffine systems and optimal control of uncertain nonlinear systems. In tracking control of nonaffine systems, a self-organizing online approximation based controller is proposed to achieve a prespecified tracking accuracy, without using high-gain control nor large magnitude switching. For optimal control of uncertain nonlinear systems, we considered point-wise min-norm optimal control of uncertain nonlinear systems and approximately optimal control of uncertain nonlinear systems. In point-wise non-norm optimal control, optimal regulation and optimal tracking controllers were proposed with the aid of locally weighted learning observers. By introducing control Lyapunov functions and redefining the optimal criterions, analytic controllers were proposed and were optimal in the sense of min-norm. In approximately optimal control of uncertain nonlinear systems, adaptive optimal controllers were proposed with the aid of iterative approximation techniques and adaptive control. By iteratively learning, the difficulty of solving Hamilton-Jacobian-Bellman (HJB) equation is overcome. The proposed adaptive optimal algorithms can be applied to solve optimal control problem of a large class of nonlinear systems. To show effectiveness of the proposed controllers for above problems, simulations were done in computers.

Deep Reinforcement Learning with Guaranteed Performance

Deep Reinforcement Learning with Guaranteed Performance PDF Author: Yinyan Zhang
Publisher: Springer Nature
ISBN: 3030333841
Category : Technology & Engineering
Languages : en
Pages : 225

Book Description
This book discusses methods and algorithms for the near-optimal adaptive control of nonlinear systems, including the corresponding theoretical analysis and simulative examples, and presents two innovative methods for the redundancy resolution of redundant manipulators with consideration of parameter uncertainty and periodic disturbances. It also reports on a series of systematic investigations on a near-optimal adaptive control method based on the Taylor expansion, neural networks, estimator design approaches, and the idea of sliding mode control, focusing on the tracking control problem of nonlinear systems under different scenarios. The book culminates with a presentation of two new redundancy resolution methods; one addresses adaptive kinematic control of redundant manipulators, and the other centers on the effect of periodic input disturbance on redundancy resolution. Each self-contained chapter is clearly written, making the book accessible to graduate students as well as academic and industrial researchers in the fields of adaptive and optimal control, robotics, and dynamic neural networks.

Linear Systems Theory

Linear Systems Theory PDF Author: João P. Hespanha
Publisher: Princeton University Press
ISBN: 0691179573
Category : Mathematics
Languages : en
Pages : 352

Book Description
A fully updated textbook on linear systems theory Linear systems theory is the cornerstone of control theory and a well-established discipline that focuses on linear differential equations from the perspective of control and estimation. This updated second edition of Linear Systems Theory covers the subject's key topics in a unique lecture-style format, making the book easy to use for instructors and students. João Hespanha looks at system representation, stability, controllability and state feedback, observability and state estimation, and realization theory. He provides the background for advanced modern control design techniques and feedback linearization and examines advanced foundational topics, such as multivariable poles and zeros and LQG/LQR. The textbook presents only the most essential mathematical derivations and places comments, discussion, and terminology in sidebars so that readers can follow the core material easily and without distraction. Annotated proofs with sidebars explain the techniques of proof construction, including contradiction, contraposition, cycles of implications to prove equivalence, and the difference between necessity and sufficiency. Annotated theoretical developments also use sidebars to discuss relevant commands available in MATLAB, allowing students to understand these tools. This second edition contains a large number of new practice exercises with solutions. Based on typical problems, these exercises guide students to succinct and precise answers, helping to clarify issues and consolidate knowledge. The book's balanced chapters can each be covered in approximately two hours of lecture time, simplifying course planning and student review. Easy-to-use textbook in unique lecture-style format Sidebars explain topics in further detail Annotated proofs and discussions of MATLAB commands Balanced chapters can each be taught in two hours of course lecture New practice exercises with solutions included

Discrete-Time Inverse Optimal Control for Nonlinear Systems

Discrete-Time Inverse Optimal Control for Nonlinear Systems PDF Author: Edgar N. Sanchez
Publisher: CRC Press
ISBN: 1466580887
Category : Technology & Engineering
Languages : en
Pages : 268

Book Description
Discrete-Time Inverse Optimal Control for Nonlinear Systems proposes a novel inverse optimal control scheme for stabilization and trajectory tracking of discrete-time nonlinear systems. This avoids the need to solve the associated Hamilton-Jacobi-Bellman equation and minimizes a cost functional, resulting in a more efficient controller. Design More Efficient Controllers for Stabilization and Trajectory Tracking of Discrete-Time Nonlinear Systems The book presents two approaches for controller synthesis: the first based on passivity theory and the second on a control Lyapunov function (CLF). The synthesized discrete-time optimal controller can be directly implemented in real-time systems. The book also proposes the use of recurrent neural networks to model discrete-time nonlinear systems. Combined with the inverse optimal control approach, such models constitute a powerful tool to deal with uncertainties such as unmodeled dynamics and disturbances. Learn from Simulations and an In-Depth Case Study The authors include a variety of simulations to illustrate the effectiveness of the synthesized controllers for stabilization and trajectory tracking of discrete-time nonlinear systems. An in-depth case study applies the control schemes to glycemic control in patients with type 1 diabetes mellitus, to calculate the adequate insulin delivery rate required to prevent hyperglycemia and hypoglycemia levels. The discrete-time optimal and robust control techniques proposed can be used in a range of industrial applications, from aerospace and energy to biomedical and electromechanical systems. Highlighting optimal and efficient control algorithms, this is a valuable resource for researchers, engineers, and students working in nonlinear system control.

Real-time Optimal Control of Nonlinear Systems Using Neural Networks

Real-time Optimal Control of Nonlinear Systems Using Neural Networks PDF Author: Jaipaul Karerakattil Antony
Publisher:
ISBN:
Category :
Languages : en
Pages : 66

Book Description


Advanced Optimal Control and Applications Involving Critic Intelligence

Advanced Optimal Control and Applications Involving Critic Intelligence PDF Author: Ding Wang
Publisher: Springer Nature
ISBN: 9811972915
Category : Technology & Engineering
Languages : en
Pages : 283

Book Description
This book intends to report new optimal control results with critic intelligence for complex discrete-time systems, which covers the novel control theory, advanced control methods, and typical applications for wastewater treatment systems. Therein, combining with artificial intelligence techniques, such as neural networks and reinforcement learning, the novel intelligent critic control theory as well as a series of advanced optimal regulation and trajectory tracking strategies are established for discrete-time nonlinear systems, followed by application verifications to complex wastewater treatment processes. Consequently, developing such kind of critic intelligence approaches is of great significance for nonlinear optimization and wastewater recycling. The book is likely to be of interest to researchers and practitioners as well as graduate students in automation, computer science, and process industry who wish to learn core principles, methods, algorithms, and applications in the field of intelligent optimal control. It is beneficial to promote the development of intelligent optimal control approaches and the construction of high-level intelligent systems.

Optimal Control of Nonlinear Systems with Neural Networks

Optimal Control of Nonlinear Systems with Neural Networks PDF Author: Raymond T. Shen
Publisher:
ISBN:
Category :
Languages : en
Pages : 192

Book Description


Adaptive Critic Control with Robust Stabilization for Uncertain Nonlinear Systems

Adaptive Critic Control with Robust Stabilization for Uncertain Nonlinear Systems PDF Author: Ding Wang
Publisher: Springer
ISBN: 9811312532
Category : Technology & Engineering
Languages : en
Pages : 307

Book Description
This book reports on the latest advances in adaptive critic control with robust stabilization for uncertain nonlinear systems. Covering the core theory, novel methods, and a number of typical industrial applications related to the robust adaptive critic control field, it develops a comprehensive framework of robust adaptive strategies, including theoretical analysis, algorithm design, simulation verification, and experimental results. As such, it is of interest to university researchers, graduate students, and engineers in the fields of automation, computer science, and electrical engineering wishing to learn about the fundamental principles, methods, algorithms, and applications in the field of robust adaptive critic control. In addition, it promotes the development of robust adaptive critic control approaches, and the construction of higher-level intelligent systems.