Time Series in High Dimension: the General Dynamic Factor Model PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Time Series in High Dimension: the General Dynamic Factor Model PDF full book. Access full book title Time Series in High Dimension: the General Dynamic Factor Model by Marc Hallin. Download full books in PDF and EPUB format.

Time Series in High Dimension: the General Dynamic Factor Model

Time Series in High Dimension: the General Dynamic Factor Model PDF Author: Marc Hallin
Publisher: World Scientific Publishing Company
ISBN: 9789813278004
Category : Business & Economics
Languages : en
Pages : 764

Book Description
Factor models have become the most successful tool in the analysis and forecasting of high-dimensional time series. This monograph provides an extensive account of the so-called General Dynamic Factor Model methods. The topics covered include: asymptotic representation problems, estimation, forecasting, identification of the number of factors, identification of structural shocks, volatility analysis, and applications to macroeconomic and financial data.

Time Series in High Dimension: the General Dynamic Factor Model

Time Series in High Dimension: the General Dynamic Factor Model PDF Author: Marc Hallin
Publisher: World Scientific Publishing Company
ISBN: 9789813278004
Category : Business & Economics
Languages : en
Pages : 764

Book Description
Factor models have become the most successful tool in the analysis and forecasting of high-dimensional time series. This monograph provides an extensive account of the so-called General Dynamic Factor Model methods. The topics covered include: asymptotic representation problems, estimation, forecasting, identification of the number of factors, identification of structural shocks, volatility analysis, and applications to macroeconomic and financial data.

Essays in Nonlinear Time Series Econometrics

Essays in Nonlinear Time Series Econometrics PDF Author: Niels Haldrup
Publisher: Oxford University Press, USA
ISBN: 0199679959
Category : Business & Economics
Languages : en
Pages : 393

Book Description
A book on nonlinear economic relations that involve time. It covers specification testing of linear versus non-linear models, model specification testing, estimation of smooth transition models, volatility modelling using non-linear model specification, analysis of high dimensional data set, and forecasting.

Economic Forecasting

Economic Forecasting PDF Author: Graham Elliott
Publisher: Princeton University Press
ISBN: 1400880890
Category : Business & Economics
Languages : en
Pages : 567

Book Description
A comprehensive and integrated approach to economic forecasting problems Economic forecasting involves choosing simple yet robust models to best approximate highly complex and evolving data-generating processes. This poses unique challenges for researchers in a host of practical forecasting situations, from forecasting budget deficits and assessing financial risk to predicting inflation and stock market returns. Economic Forecasting presents a comprehensive, unified approach to assessing the costs and benefits of different methods currently available to forecasters. This text approaches forecasting problems from the perspective of decision theory and estimation, and demonstrates the profound implications of this approach for how we understand variable selection, estimation, and combination methods for forecasting models, and how we evaluate the resulting forecasts. Both Bayesian and non-Bayesian methods are covered in depth, as are a range of cutting-edge techniques for producing point, interval, and density forecasts. The book features detailed presentations and empirical examples of a range of forecasting methods and shows how to generate forecasts in the presence of large-dimensional sets of predictor variables. The authors pay special attention to how estimation error, model uncertainty, and model instability affect forecasting performance. Presents a comprehensive and integrated approach to assessing the strengths and weaknesses of different forecasting methods Approaches forecasting from a decision theoretic and estimation perspective Covers Bayesian modeling, including methods for generating density forecasts Discusses model selection methods as well as forecast combinations Covers a large range of nonlinear prediction models, including regime switching models, threshold autoregressions, and models with time-varying volatility Features numerous empirical examples Examines the latest advances in forecast evaluation Essential for practitioners and students alike

Structural Vector Autoregressive Analysis

Structural Vector Autoregressive Analysis PDF Author: Lutz Kilian
Publisher: Cambridge University Press
ISBN: 1108186874
Category : Business & Economics
Languages : en
Pages : 757

Book Description
Structural vector autoregressive (VAR) models are important tools for empirical work in macroeconomics, finance, and related fields. This book not only reviews the many alternative structural VAR approaches discussed in the literature, but also highlights their pros and cons in practice. It provides guidance to empirical researchers as to the most appropriate modeling choices, methods of estimating, and evaluating structural VAR models. The book traces the evolution of the structural VAR methodology and contrasts it with other common methodologies, including dynamic stochastic general equilibrium (DSGE) models. It is intended as a bridge between the often quite technical econometric literature on structural VAR modeling and the needs of empirical researchers. The focus is not on providing the most rigorous theoretical arguments, but on enhancing the reader's understanding of the methods in question and their assumptions. Empirical examples are provided for illustration.

Dynamic Factor Models

Dynamic Factor Models PDF Author: Jörg Breitung
Publisher:
ISBN: 9783865580979
Category :
Languages : en
Pages : 29

Book Description


Empirical Asset Pricing Models

Empirical Asset Pricing Models PDF Author: Jau-Lian Jeng
Publisher: Springer
ISBN: 3319741926
Category : Business & Economics
Languages : en
Pages : 277

Book Description
This book analyzes the verification of empirical asset pricing models when returns of securities are projected onto a set of presumed (or observed) factors. Particular emphasis is placed on the verification of essential factors and features for asset returns through model search approaches, in which non-diversifiability and statistical inferences are considered. The discussion reemphasizes the necessity of maintaining a dichotomy between the nondiversifiable pricing kernels and the individual components of stock returns when empirical asset pricing models are of interest. In particular, the model search approach (with this dichotomy emphasized) for empirical model selection of asset pricing is applied to discover the pricing kernels of asset returns.

Handbook of Research Methods and Applications in Empirical Macroeconomics

Handbook of Research Methods and Applications in Empirical Macroeconomics PDF Author: Nigar Hashimzade
Publisher: Edward Elgar Publishing
ISBN: 0857931024
Category : Business & Economics
Languages : en
Pages : 627

Book Description
This comprehensive Handbook presents the current state of art in the theory and methodology of macroeconomic data analysis. It is intended as a reference for graduate students and researchers interested in exploring new methodologies, but can also be employed as a graduate text. The Handbook concentrates on the most important issues, models and techniques for research in macroeconomics, and highlights the core methodologies and their empirical application in an accessible manner. Each chapter is largely self-contained, whilst the comprehensive introduction provides an overview of the key statistical concepts and methods. All of the chapters include the essential references for each topic and provide a sound guide for further reading. Topics covered include unit roots, non-linearities and structural breaks, time aggregation, forecasting, the Kalman filter, generalised method of moments, maximum likelihood and Bayesian estimation, vector autoregressive, dynamic stochastic general equilibrium and dynamic panel models. Presenting the most important models and techniques for empirical research, this Handbook will appeal to students, researchers and academics working in empirical macro and econometrics.

Portfolio Risk Analysis

Portfolio Risk Analysis PDF Author: Gregory Connor
Publisher: Princeton University Press
ISBN: 1400835291
Category : Business & Economics
Languages : en
Pages : 400

Book Description
Portfolio risk forecasting has been and continues to be an active research field for both academics and practitioners. Almost all institutional investment management firms use quantitative models for their portfolio forecasting, and researchers have explored models' econometric foundations, relative performance, and implications for capital market behavior and asset pricing equilibrium. Portfolio Risk Analysis provides an insightful and thorough overview of financial risk modeling, with an emphasis on practical applications, empirical reality, and historical perspective. Beginning with mean-variance analysis and the capital asset pricing model, the authors give a comprehensive and detailed account of factor models, which are the key to successful risk analysis in every economic climate. Topics range from the relative merits of fundamental, statistical, and macroeconomic models, to GARCH and other time series models, to the properties of the VIX volatility index. The book covers both mainstream and alternative asset classes, and includes in-depth treatments of model integration and evaluation. Credit and liquidity risk and the uncertainty of extreme events are examined in an intuitive and rigorous way. An extensive literature review accompanies each topic. The authors complement basic modeling techniques with references to applications, empirical studies, and advanced mathematical texts. This book is essential for financial practitioners, researchers, scholars, and students who want to understand the nature of financial markets or work toward improving them.

Aggregation and the Microfoundations of Dynamic Macroeconomics

Aggregation and the Microfoundations of Dynamic Macroeconomics PDF Author: Mario Forni
Publisher: Oxford University Press
ISBN: 9780198288008
Category : Business & Economics
Languages : en
Pages : 264

Book Description
Through careful methodological analysis, this book argues that modern macroeconomics has completely overlooked the aggregate nature of the data. In Part I, the authors test and reject the homogeneity assumption using disaggregate data. In Part II, they demonstrate that apart from random flukes, cointegration unidirectional Granger causality and restrictions on parameters do not survive aggregation when heterogeneity is introduced. They conclude that the claim that modern macroeconomics has solid microfoundations is unwarranted. However, some important theory-based models that do not fit aggregate data well in their representative-agent version can be reconciled with aggregate data by introducing heterogeneity.

Financial Signal Processing and Machine Learning

Financial Signal Processing and Machine Learning PDF Author: Ali N. Akansu
Publisher: John Wiley & Sons
ISBN: 1118745671
Category : Technology & Engineering
Languages : en
Pages : 324

Book Description
The modern financial industry has been required to deal with large and diverse portfolios in a variety of asset classes often with limited market data available. Financial Signal Processing and Machine Learning unifies a number of recent advances made in signal processing and machine learning for the design and management of investment portfolios and financial engineering. This book bridges the gap between these disciplines, offering the latest information on key topics including characterizing statistical dependence and correlation in high dimensions, constructing effective and robust risk measures, and their use in portfolio optimization and rebalancing. The book focuses on signal processing approaches to model return, momentum, and mean reversion, addressing theoretical and implementation aspects. It highlights the connections between portfolio theory, sparse learning and compressed sensing, sparse eigen-portfolios, robust optimization, non-Gaussian data-driven risk measures, graphical models, causal analysis through temporal-causal modeling, and large-scale copula-based approaches. Key features: Highlights signal processing and machine learning as key approaches to quantitative finance. Offers advanced mathematical tools for high-dimensional portfolio construction, monitoring, and post-trade analysis problems. Presents portfolio theory, sparse learning and compressed sensing, sparsity methods for investment portfolios. including eigen-portfolios, model return, momentum, mean reversion and non-Gaussian data-driven risk measures with real-world applications of these techniques. Includes contributions from leading researchers and practitioners in both the signal and information processing communities, and the quantitative finance community.