Selected Topics On Stochastic Modelling PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Selected Topics On Stochastic Modelling PDF full book. Access full book title Selected Topics On Stochastic Modelling by Mariano J Valderrama Bonnet. Download full books in PDF and EPUB format.

Selected Topics On Stochastic Modelling

Selected Topics On Stochastic Modelling PDF Author: Mariano J Valderrama Bonnet
Publisher: World Scientific
ISBN: 9814550701
Category :
Languages : en
Pages : 326

Book Description
This volume contains a selection of papers on recent developments in fields such as stochastic processes, multivariate data analysis and stochastic models in operations research, earth and life sciences and information theory, from an applicative perspective. Some of them have been extracted from lectures given at the Department of Statistics and Operations Research at the University of Granada for the past two years (Kai Lai Chung and Marcel F Neuts, among others). All the papers have been carefully selected and revised.

Selected Topics On Stochastic Modelling

Selected Topics On Stochastic Modelling PDF Author: Mariano J Valderrama Bonnet
Publisher: World Scientific
ISBN: 9814550701
Category :
Languages : en
Pages : 326

Book Description
This volume contains a selection of papers on recent developments in fields such as stochastic processes, multivariate data analysis and stochastic models in operations research, earth and life sciences and information theory, from an applicative perspective. Some of them have been extracted from lectures given at the Department of Statistics and Operations Research at the University of Granada for the past two years (Kai Lai Chung and Marcel F Neuts, among others). All the papers have been carefully selected and revised.

An Introduction to Stochastic Modeling

An Introduction to Stochastic Modeling PDF Author: Howard M. Taylor
Publisher: Academic Press
ISBN: 1483269272
Category : Mathematics
Languages : en
Pages : 410

Book Description
An Introduction to Stochastic Modeling provides information pertinent to the standard concepts and methods of stochastic modeling. This book presents the rich diversity of applications of stochastic processes in the sciences. Organized into nine chapters, this book begins with an overview of diverse types of stochastic models, which predicts a set of possible outcomes weighed by their likelihoods or probabilities. This text then provides exercises in the applications of simple stochastic analysis to appropriate problems. Other chapters consider the study of general functions of independent, identically distributed, nonnegative random variables representing the successive intervals between renewals. This book discusses as well the numerous examples of Markov branching processes that arise naturally in various scientific disciplines. The final chapter deals with queueing models, which aid the design process by predicting system performance. This book is a valuable resource for students of engineering and management science. Engineers will also find this book useful.

Elements of Stochastic Modelling

Elements of Stochastic Modelling PDF Author: K. A. Borovkov
Publisher: World Scientific
ISBN: 9789812383013
Category : Mathematics
Languages : en
Pages : 360

Book Description
This textbook has been developed from the lecture notes for a one-semester course on stochastic modelling. It reviews the basics of probability theory and then covers the following topics: Markov chains, Markov decision processes, jump Markov processes, elements of queueing theory, basic renewal theory, elements of time series and simulation. Rigorous proofs are often replaced with sketches of arguments ? with indications as to why a particular result holds, and also how it is connected with other results ? and illustrated by examples. Wherever possible, the book includes references to more specialised texts containing both proofs and more advanced material related to the topics covered.

Statistical Topics and Stochastic Models for Dependent Data with Applications

Statistical Topics and Stochastic Models for Dependent Data with Applications PDF Author: Vlad Stefan Barbu
Publisher: John Wiley & Sons
ISBN: 1786306034
Category : Mathematics
Languages : en
Pages : 288

Book Description
This book is a collective volume authored by leading scientists in the field of stochastic modelling, associated statistical topics and corresponding applications. The main classes of stochastic processes for dependent data investigated throughout this book are Markov, semi-Markov, autoregressive and piecewise deterministic Markov models. The material is divided into three parts corresponding to: (i) Markov and semi-Markov processes, (ii) autoregressive processes and (iii) techniques based on divergence measures and entropies. A special attention is payed to applications in reliability, survival analysis and related fields.

Stochastic Models in Reliability and Maintenance

Stochastic Models in Reliability and Maintenance PDF Author: Shunji Osaki
Publisher: Springer Science & Business Media
ISBN: 3540248080
Category : Mathematics
Languages : en
Pages : 338

Book Description
Our daily lives can be maintained by the high-technology systems. Computer systems are typical examples of such systems. We can enjoy our modern lives by using many computer systems. Much more importantly, we have to maintain such systems without failure, but cannot predict when such systems will fail and how to fix such systems without delay. A stochastic process is a set of outcomes of a random experiment indexed by time, and is one of the key tools needed to analyze the future behavior quantitatively. Reliability and maintainability technologies are of great interest and importance to the maintenance of such systems. Many mathematical models have been and will be proposed to describe reliability and maintainability systems by using the stochastic processes. The theme of this book is "Stochastic Models in Reliability and Main tainability. " This book consists of 12 chapters on the theme above from the different viewpoints of stochastic modeling. Chapter 1 is devoted to "Renewal Processes," under which classical renewal theory is surveyed and computa tional methods are described. Chapter 2 discusses "Stochastic Orders," and in it some definitions and concepts on stochastic orders are described and ag ing properties can be characterized by stochastic orders. Chapter 3 is devoted to "Classical Maintenance Models," under which the so-called age, block and other replacement models are surveyed. Chapter 4 discusses "Modeling Plant Maintenance," describing how maintenance practice can be carried out for plant maintenance.

Stochastic Modelling of Social Processes

Stochastic Modelling of Social Processes PDF Author: Andreas Diekmann
Publisher: Academic Press
ISBN: 1483266567
Category : Mathematics
Languages : en
Pages : 352

Book Description
Stochastic Modelling of Social Processes provides information pertinent to the development in the field of stochastic modeling and its applications in the social sciences. This book demonstrates that stochastic models can fulfill the goals of explanation and prediction. Organized into nine chapters, this book begins with an overview of stochastic models that fulfill normative, predictive, and structural–analytic roles with the aid of the theory of probability. This text then examines the study of labor market structures using analysis of job and career mobility, which is one of the approaches taken by sociologists in research on the labor market. Other chapters consider the characteristic trends and patterns from data on divorces. This book discusses as well the two approaches of stochastic modeling of social processes, namely competing risk models and semi-Markov processes. The final chapter deals with the practical application of regression models of survival data. This book is a valuable resource for social scientists and statisticians.

Stochastic Modeling

Stochastic Modeling PDF Author: Nicolas Lanchier
Publisher: Springer
ISBN: 3319500384
Category : Mathematics
Languages : en
Pages : 305

Book Description
Three coherent parts form the material covered in this text, portions of which have not been widely covered in traditional textbooks. In this coverage the reader is quickly introduced to several different topics enriched with 175 exercises which focus on real-world problems. Exercises range from the classics of probability theory to more exotic research-oriented problems based on numerical simulations. Intended for graduate students in mathematics and applied sciences, the text provides the tools and training needed to write and use programs for research purposes. The first part of the text begins with a brief review of measure theory and revisits the main concepts of probability theory, from random variables to the standard limit theorems. The second part covers traditional material on stochastic processes, including martingales, discrete-time Markov chains, Poisson processes, and continuous-time Markov chains. The theory developed is illustrated by a variety of examples surrounding applications such as the gambler’s ruin chain, branching processes, symmetric random walks, and queueing systems. The third, more research-oriented part of the text, discusses special stochastic processes of interest in physics, biology, and sociology. Additional emphasis is placed on minimal models that have been used historically to develop new mathematical techniques in the field of stochastic processes: the logistic growth process, the Wright –Fisher model, Kingman’s coalescent, percolation models, the contact process, and the voter model. Further treatment of the material explains how these special processes are connected to each other from a modeling perspective as well as their simulation capabilities in C and MatlabTM.

Stochastic Integration and Differential Equations

Stochastic Integration and Differential Equations PDF Author: Philip Protter
Publisher: Springer
ISBN: 3662100614
Category : Mathematics
Languages : en
Pages : 430

Book Description
It has been 15 years since the first edition of Stochastic Integration and Differential Equations, A New Approach appeared, and in those years many other texts on the same subject have been published, often with connections to applications, especially mathematical finance. Yet in spite of the apparent simplicity of approach, none of these books has used the functional analytic method of presenting semimartingales and stochastic integration. Thus a 2nd edition seems worthwhile and timely, though it is no longer appropriate to call it "a new approach". The new edition has several significant changes, most prominently the addition of exercises for solution. These are intended to supplement the text, but lemmas needed in a proof are never relegated to the exercises. Many of the exercises have been tested by graduate students at Purdue and Cornell Universities. Chapter 3 has been completely redone, with a new, more intuitive and simultaneously elementary proof of the fundamental Doob-Meyer decomposition theorem, the more general version of the Girsanov theorem due to Lenglart, the Kazamaki-Novikov criteria for exponential local martingales to be martingales, and a modern treatment of compensators. Chapter 4 treats sigma martingales (important in finance theory) and gives a more comprehensive treatment of martingale representation, including both the Jacod-Yor theory and Emery’s examples of martingales that actually have martingale representation (thus going beyond the standard cases of Brownian motion and the compensated Poisson process). New topics added include an introduction to the theory of the expansion of filtrations, a treatment of the Fefferman martingale inequality, and that the dual space of the martingale space H^1 can be identified with BMO martingales. Solutions to selected exercises are available at the web site of the author, with current URL http://www.orie.cornell.edu/~protter/books.html.

Stochastic Processes and Models in Operations Research

Stochastic Processes and Models in Operations Research PDF Author: Anbazhagan, Neelamegam
Publisher: IGI Global
ISBN: 1522500456
Category : Business & Economics
Languages : en
Pages : 359

Book Description
Decision-making is an important task no matter the industry. Operations research, as a discipline, helps alleviate decision-making problems through the extraction of reliable information related to the task at hand in order to come to a viable solution. Integrating stochastic processes into operations research and management can further aid in the decision-making process for industrial and management problems. Stochastic Processes and Models in Operations Research emphasizes mathematical tools and equations relevant for solving complex problems within business and industrial settings. This research-based publication aims to assist scholars, researchers, operations managers, and graduate-level students by providing comprehensive exposure to the concepts, trends, and technologies relevant to stochastic process modeling to solve operations research problems.

Introduction to Matrix Analytic Methods in Stochastic Modeling

Introduction to Matrix Analytic Methods in Stochastic Modeling PDF Author: G. Latouche
Publisher: SIAM
ISBN: 0898714257
Category : Mathematics
Languages : en
Pages : 331

Book Description
Presents the basic mathematical ideas and algorithms of the matrix analytic theory in a readable, up-to-date, and comprehensive manner.