Selected Asymptotic Methods with Applications to Electromagnetics and Antennas PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Selected Asymptotic Methods with Applications to Electromagnetics and Antennas PDF full book. Access full book title Selected Asymptotic Methods with Applications to Electromagnetics and Antennas by George Fikioris. Download full books in PDF and EPUB format.

Selected Asymptotic Methods with Applications to Electromagnetics and Antennas

Selected Asymptotic Methods with Applications to Electromagnetics and Antennas PDF Author: George Fikioris
Publisher: Springer Nature
ISBN: 3031017161
Category : Technology & Engineering
Languages : en
Pages : 187

Book Description
This book describes and illustrates the application of several asymptotic methods that have proved useful in the authors' research in electromagnetics and antennas. We first define asymptotic approximations and expansions and explain these concepts in detail. We then develop certain prerequisites from complex analysis such as power series, multivalued functions (including the concepts of branch points and branch cuts), and the all-important gamma function. Of particular importance is the idea of analytic continuation (of functions of a single complex variable); our discussions here include some recent, direct applications to antennas and computational electromagnetics. Then, specific methods are discussed. These include integration by parts and the Riemann-Lebesgue lemma, the use of contour integration in conjunction with other methods, techniques related to Laplace's method and Watson's lemma, the asymptotic behavior of certain Fourier sine and cosine transforms, and the Poisson summation formula (including its version for finite sums). Often underutilized in the literature are asymptotic techniques based on the Mellin transform; our treatment of this subject complements the techniques presented in our recent Synthesis Lecture on the exact (not asymptotic) evaluation of integrals.

Selected Asymptotic Methods with Applications to Electromagnetics and Antennas

Selected Asymptotic Methods with Applications to Electromagnetics and Antennas PDF Author: George Fikioris
Publisher: Springer Nature
ISBN: 3031017161
Category : Technology & Engineering
Languages : en
Pages : 187

Book Description
This book describes and illustrates the application of several asymptotic methods that have proved useful in the authors' research in electromagnetics and antennas. We first define asymptotic approximations and expansions and explain these concepts in detail. We then develop certain prerequisites from complex analysis such as power series, multivalued functions (including the concepts of branch points and branch cuts), and the all-important gamma function. Of particular importance is the idea of analytic continuation (of functions of a single complex variable); our discussions here include some recent, direct applications to antennas and computational electromagnetics. Then, specific methods are discussed. These include integration by parts and the Riemann-Lebesgue lemma, the use of contour integration in conjunction with other methods, techniques related to Laplace's method and Watson's lemma, the asymptotic behavior of certain Fourier sine and cosine transforms, and the Poisson summation formula (including its version for finite sums). Often underutilized in the literature are asymptotic techniques based on the Mellin transform; our treatment of this subject complements the techniques presented in our recent Synthesis Lecture on the exact (not asymptotic) evaluation of integrals.

Selected Asymptotic Methods with Applications to Electromagnetics and Antennas

Selected Asymptotic Methods with Applications to Electromagnetics and Antennas PDF Author: George J. Fikioris
Publisher: Morgan & Claypool
ISBN: 9781627050395
Category : Antennas (Electronics)
Languages : en
Pages : 0

Book Description
This book describes and illustrates the application of several asymptotic methods that have proved useful in the authors' research in electromagnetics and antennas. We first define asymptotic approximations and expansions and explain these concepts in detail. We then develop certain prerequisites from complex analysis such as power series, multivalued functions (including the concepts of branch points and branch cuts), and the all-important gamma function. Of particular importance is the idea of analytic continuation (of functions of a single complex variable); our discussions here include some recent, direct applications to antennas and computational electromagnetics. Then, specific methods are discussed. These include integration by parts and the Riemann-Lebesgue lemma, the use of contour integration in conjunction with other methods, techniques related to Laplace's method and Watson's lemma, the asymptotic behavior of certain Fourier sine and cosine transforms, and the Poisson summation formula (including its version for finite sums). Often underutilized in the literature are asymptotic techniques based on the Mellin transform; our treatment of this subject complements the techniques presented in our recent Synthesis Lecture on the exact (not asymptotic) evaluation of integrals. Throughout, we provide illustrative examples. Some of them are applications to special functions of mathematical physics. Others, taken from our published research, include the application of elementary methods to develop certain simple formulas for transmission lines, examples illustrating the difficulties in solving fundamental integral equations of antenna theory, an examination of the fundamentals of the Method of Auxiliary Sources (MAS), and a study of the near fields of certain unusual types of radiators. Table of Contents: Preface / Introduction: Simple Asymptotic Approximations / Asymptotic Approximations Defined / Concepts from Complex Variables / Laplace's Method and Watson's Lemma / Integration by Parts and Asymptotics of Some Fourier Transforms / Poisson Summation Formula and Applications / Mellin-Transform Method for Asymptotic Evaluation of Integrals / More Applications to Wire Antennas / Authors' Biographies / Index

Practical Applications of Asymptotic Techniques in Electromagnetics

Practical Applications of Asymptotic Techniques in Electromagnetics PDF Author: Francisco Sáez de Adana
Publisher: Artech House
ISBN: 1608070646
Category : Mathematics
Languages : en
Pages : 231

Book Description
"Antenna, wireless communication and other electrical engineers use asymptotic techniques for solving electromagnetic problems when the electrical size of a given scenario is large in comparison to the wavelength. This practical book offers in-depth coverage of this area, showing how to apply these techniques to the analysis of complex electromagnetic problems in order to obtain results with an exceptionally high degree of accuracy. Focusing on two highly-effective methods - the uniform theory of diffraction (UTD) and physical optics (PO), this book is unique in that it emphasizes how to solve real-world problems, rather than simply explaining theory like other books on the market. This first-of-its-kind resource show professionals how to apply this knowledge to a wide range of projects in the field, including antenna design, mobile communications, and RCS (radar cross section) computation. This authoritative book is supported with more than 100 illustrations and over 250 equations."

Asymptotic Multiple Scale Method in Time Domain

Asymptotic Multiple Scale Method in Time Domain PDF Author: Jan Awrejcewicz
Publisher: CRC Press
ISBN: 1000581276
Category : Mathematics
Languages : en
Pages : 506

Book Description
This book offers up novel research which uses analytical approaches to explore nonlinear features exhibited by various dynamic processes. Relevant to disciplines across engineering and physics, the asymptotic method combined with the multiple scale method is shown to be an efficient and intuitive way to approach mechanics. Beginning with new material on the development of cutting-edge asymptotic methods and multiple scale methods, the book introduces this method in time domain and provides examples of vibrations of systems. Clearly written throughout, it uses innovative graphics to exemplify complex concepts such as nonlinear stationary and nonstationary processes, various resonances and jump pull-in phenomena. It also demonstrates the simplification of problems through using mathematical modelling, by employing the use of limiting phase trajectories to quantify nonlinear phenomena. Particularly relevant to structural mechanics, in rods, cables, beams, plates and shells, as well as mechanical objects commonly found in everyday devices such as mobile phones and cameras, the book shows how each system is modelled, and how it behaves under various conditions. It will be of interest to engineers and professionals in mechanical engineering and structural engineering, alongside those interested in vibrations and dynamics. It will also be useful to those studying engineering maths and physics.

Accurate Computation of Mathieu Functions

Accurate Computation of Mathieu Functions PDF Author: Andrew Peterson
Publisher: Springer Nature
ISBN: 303101717X
Category : Technology & Engineering
Languages : en
Pages : 123

Book Description
This lecture presents a modern approach for the computation of Mathieu functions. These functions find application in boundary value analysis such as electromagnetic scattering from elliptic cylinders and flat strips, as well as the analogous acoustic and optical problems, and many other applications in science and engineering. The authors review the traditional approach used for these functions, show its limitations, and provide an alternative "tuned" approach enabling improved accuracy and convergence. The performance of this approach is investigated for a wide range of parameters and machine precision. Examples from electromagnetic scattering are provided for illustration and to show the convergence of the typical series that employ Mathieu functions for boundary value analysis.

Numerical and Asymptotic Techniques in Electromagnetics

Numerical and Asymptotic Techniques in Electromagnetics PDF Author: Raj Mittra
Publisher: Springer
ISBN:
Category : Science
Languages : en
Pages : 284

Book Description


Asymptotic and Hybrid Methods in Electromagnetics

Asymptotic and Hybrid Methods in Electromagnetics PDF Author: I. Andronov
Publisher: IET
ISBN: 0863414478
Category : Science
Languages : en
Pages : 263

Book Description
Asymptotic methods provide considerable physical insight and understanding of diffraction mechanisms and are very useful in the design of electromagnetic devices such as radar targets and antennas. However, difficulties can arise when trying to solve problems using multipole and asymoptotic methods together, such as in radar crosssection objects. This new book offers a solution to this problem by combining these approaches into hybrid methods, therefore creating high demand for both understanding and learning how to apply asymptotic and hybrid methods to solve diffraction problems.

Asymptotic Methods in Electromagnetics

Asymptotic Methods in Electromagnetics PDF Author: Daniel Bouche
Publisher: Springer Science & Business Media
ISBN: 3642605176
Category : Science
Languages : en
Pages : 540

Book Description
Numerically rigorous techniques for the computation of electromagnetic fields diffracted by an object become computationally intensive, if not impractical to handle, at high frequencies and one must resort to asymptotic methods to solve the scattering problem at short wavelengths. The asymptotic methods provide closed form expansions for the diffracted fields and are also useful for eliciting physical interpretations of the various diffraction phenomena. One of the principal objectives of this book is to discuss the different asymptotic methods in a unified manner. Although the book contains explicit formulas for computing the field diffracted by conducting or dielectric-coated objects, it also provides the mathematical foundations of the different methods and explains how they are interrelated.

Advanced Computational Electromagnetic Methods

Advanced Computational Electromagnetic Methods PDF Author: Wenhua Yu
Publisher: Artech House
ISBN: 1608078973
Category : Technology & Engineering
Languages : en
Pages : 597

Book Description
This new resource covers the latest developments in computational electromagnetic methods, with emphasis on cutting-edge applications. This book is designed to extend existing literature to the latest development in computational electromagnetic methods, which are of interest to readers in both academic and industrial areas. The topics include advanced techniques in MoM, FEM and FDTD, spectral domain method, GPU and Phi hardware acceleration, metamaterials, frequency and time domain integral equations, and statistics methods in bio-electromagnetics.

Finite Element Method Electromagnetics

Finite Element Method Electromagnetics PDF Author: John L. Volakis
Publisher: John Wiley & Sons
ISBN: 9780780334250
Category : Science
Languages : en
Pages : 364

Book Description
Employed in a large number of commercial electromagnetic simulation packages, the finite element method is one of the most popular and well-established numerical techniques in engineering. This book covers the theory, development, implementation, and application of the finite element method and its hybrid versions to electromagnetics. FINITE ELEMENT METHOD FOR ELECTROMAGNETICS begins with a step-by-step textbook presentation of the finite method and its variations then goes on to provide up-to-date coverage of three dimensional formulations and modern applications to open and closed domain problems. Worked out examples are included to aid the reader with the fine features of the method and the implementation of its hybridization with other techniques for a robust simulation of large scale radiation and scattering. The crucial treatment of local boundary conditions is carefully worked out in several stages in the book. Sponsored by: IEEE Antennas and Propagation Society.