Seismic Responses of Buckling-restrained Braced Frames and Self-centering Braced Frames PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Seismic Responses of Buckling-restrained Braced Frames and Self-centering Braced Frames PDF full book. Access full book title Seismic Responses of Buckling-restrained Braced Frames and Self-centering Braced Frames by 范廷海. Download full books in PDF and EPUB format.

Seismic Responses of Buckling-restrained Braced Frames and Self-centering Braced Frames

Seismic Responses of Buckling-restrained Braced Frames and Self-centering Braced Frames PDF Author: 范廷海
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description


Seismic Responses of Buckling-restrained Braced Frames and Self-centering Braced Frames

Seismic Responses of Buckling-restrained Braced Frames and Self-centering Braced Frames PDF Author: 范廷海
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description


Damage-free Seismic-resistant Self-centering Friction-damped Braced Frames with Buckling-restrained Columns

Damage-free Seismic-resistant Self-centering Friction-damped Braced Frames with Buckling-restrained Columns PDF Author: Felix C. Blebo
Publisher:
ISBN:
Category : Damping (Mechanics)
Languages : en
Pages : 172

Book Description
Conventional concentrically braced frame (CBF) systems have limited drift capacity prior to brace buckling, and related damage leads to deterioration in strength and stiffness. CBFs are also susceptible to weak story failure. A pin- supported self-centering friction-damped braced frame system with buckling-restrained columns (FDBF-BRC) is being developed to provide significant drift capacity while limiting damage due to residual drift and soft-story mechanisms. The FDBF-BRC system consists of beams, columns, and braces branching off a central column, with buckling restrained columns (BRCs) incorporated into the system at the first story external column positions. The BRCs and friction generated at lateral-load bearings at each floor level are used to dissipate energy to minimize the overall seismic response of the FDBF-BRC system. Vertically aligned post-tensioning bars provide additional overturning moment resistance and aid in self-centering the system to eliminate residual drift. The pin support condition and the lateral stiffness of the system enable it to exhibit a nearly uniform inter-story drift distribution. In this study, a suite of 44 DBE-level ground motions used in FEMA P695 is numerically applied to several FDBF- BRCs to demonstrate the seismic performance of the system. The results show that the FDBF-BRC system has a nearly uniform inter-story drift response, high ductility, and a high energy dissipation capacity, and is an effective seismic-resistant system.

Structural Integrity Assessment

Structural Integrity Assessment PDF Author: Raghu V. Prakash
Publisher:
ISBN: 9789811387685
Category : Electronic books
Languages : en
Pages : 826

Book Description
This volume contains selected papers from the Second Quadrennial International Conference on Structural Integrity (ICONS-2018). The papers cover important topics related to structural integrity of critical installations, such as power plants, aircrafts, spacecrafts, defense and civilian components. The focus is on assuring safety of operations with high levels of reliability and structural integrity. This volume will be of interest to plant operators working with safety critical equipment, engineering solution providers, software professionals working on engineering analysis, as well as academics working in the area. .

Performance Evaluation of Steel Buckling Restrained Braced Frames Subjected to Far-Field, Near-Field, and Long-Duration Earthquakes

Performance Evaluation of Steel Buckling Restrained Braced Frames Subjected to Far-Field, Near-Field, and Long-Duration Earthquakes PDF Author: Fokruddin Ahmad
Publisher:
ISBN:
Category : Earthquake engineering
Languages : en
Pages : 0

Book Description
The use of Buckling Restrained Brace Frames (BRBFs) has been increasing in recent decades due to their ability to provide superior seismic performance and enhance the resilience of buildings against earthquakes. However, not many studies have extensively and thoroughly investigated the response and resiliency of prescriptively designed BRBF buildings to varying types of earthquake hazards. This study fills that research gap by investigating the seismic performance of two code-designed BRBFs prototype buildings subjected to far-field, near field with pulse and without pulse, and long-duration ground motion sets. The first phase of the study investigated the seismic resiliency of the prescriptively designed BRBF buildings and compared them to identical prototypes designed with mass timber PT-CLT rocking walls using the FEMA P-58 methodology to compare seismic losses. The seismic loss investigation was part of a larger study evaluating the two types of structural systems using multiple criteria decision analysis across four performance categories of seismic resiliency, global warming potential, superstructure cost, and durability. The global warming potential and superstructure cost estimate was completed by others, but this study completed the seismic resiliency assessment and multiple criteria decision analysis.The second phase of this dissertation work analyzed the structural response of the two BRBF prototype buildings across four sets of ground motions representing different hazard levels in Seattle, WA. The two prototype buildings were modeled in 3D using OpenSeesPy to understand the effect of different ground motion types on the structural responses. The analysis results showed that near-field motions increase the deformation demands, such as inter-story drift and maximum ductility in the pulse direction. Though BRBFs are not a self-centering systems, only the upper two floors of the mid-rise building experienced residual drift higher than 0.2%, which is the threshold for expecting minor repair and structural realignment. None of the stories had residual inter-story drift exceeding 0.5% drift for any motion sets. Overall, the code minimum based BRBF buildings showed excellent performance across all the different hazard types. However, the one caveat of this analysis was that long-duration motions had significantly higher cumulative ductility demand than other motion sets.Therefore, the final phase of this dissertation works further investigated the cumulative deformation demand on BRBF braces under long-duration motions. It is important to verify the ductility of the braces through analysis or testing because they act as the primary structural fuse to dissipate the earthquake energy. The final study compared different loading protocols from different countries to the nonlinear modeling results of long-duration motions. It was determined that the long duration motions had over 80% probability of exceeding the current AISC 341 required testing protocol. To rectify these issues, a new loading protocol appropriate for long-duration earthquakes was proposed that accounts for the increased plastic deformation demand and matches the cyclic content of the nonlinear dynamic analyses.In conclusion, these studies have demonstrated that prescriptively designed BRBFs that meet code minimum requirements are a high performing lateral force resisting system to a range of earthquake hazards. They have excellent seismic resiliency, even when not optimized during design through nonlinear time history analysis, as is common in performance-based earthquake engineering. Additionally, the code-designed BRBF buildings were not predicted to have high residual inter-story drifts, which means they are highly likely to be repairable with minor adjustments and re-alignment. However, it was identified that long-duration earthquakes will increase the ductility demand on the braces significantly compared to far-field and near-field earthquakes and that current minimum testing requirements do not account for this increase. A new protocol was proposed to rectify this one challenge with BRBFs.

Earthquake Engineering

Earthquake Engineering PDF Author: Yousef Bozorgnia
Publisher: CRC Press
ISBN: 0203486242
Category : Technology & Engineering
Languages : en
Pages : 958

Book Description
This multi-contributor book provides comprehensive coverage of earthquake engineering problems, an overview of traditional methods, and the scientific background on recent developments. It discusses computer methods on structural analysis and provides access to the recent design methodologies and serves as a reference for both professionals and res

Seismic Analyses of Self-centering Braced Frames and Buckling-restrained Braced Frames Using the Computer Program SAP2000

Seismic Analyses of Self-centering Braced Frames and Buckling-restrained Braced Frames Using the Computer Program SAP2000 PDF Author: 範萩賢
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description


Behaviour of Steel Structures in Seismic Areas

Behaviour of Steel Structures in Seismic Areas PDF Author: Federico Mazzolani
Publisher: CRC Press
ISBN: 1439859418
Category : Technology & Engineering
Languages : en
Pages : 1667

Book Description
Behaviour of Steel Structures in Seismic Areas comprises the latest progress in both theoretical and experimental research on the behaviour of steel structures in seismic areas. The book presents the most recent trends in the field of steel structures in seismic areas, with particular reference to the utilisation of multi-level performance bas

Proceedings of 17th Symposium on Earthquake Engineering (Vol. 1)

Proceedings of 17th Symposium on Earthquake Engineering (Vol. 1) PDF Author: Manish Shrikhande
Publisher: Springer Nature
ISBN: 9819916089
Category : Science
Languages : en
Pages : 769

Book Description
This book presents select proceedings of the 17th Symposium on Earthquake Engineering organized by the Department of Earthquake Engineering, Indian Institute of Technology Roorkee. The topics covered in the proceedings include engineering seismology and seismotectonics, earthquake hazard assessment, seismic microzonation and urban planning, dynamic properties of soils and ground response, ground improvement techniques for seismic hazards, computational soil dynamics, dynamic soil–structure interaction, codal provisions on earthquake-resistant design, seismic evaluation and retrofitting of structures, earthquake disaster mitigation and management, and many more. This book also discusses relevant issues related to earthquakes, such as human response and socioeconomic matters, post-earthquake rehabilitation, earthquake engineering education, public awareness, participation and enforcement of building safety laws, and earthquake prediction and early warning system. This book is a valuable reference for researchers and professionals working in the area of earthquake engineering.

Advanced Methods for Seismic Performance Evaluation of Building Structures

Advanced Methods for Seismic Performance Evaluation of Building Structures PDF Author: Sang Whan Han
Publisher: MDPI
ISBN: 3039432141
Category : Technology & Engineering
Languages : en
Pages : 190

Book Description
This Special Issue was created to collect the most recent and novel research on seismic performance evaluation of building structures. This issue includes three important topics on seismic engineering for building structures: (1) seismic design and performance evaluation, (2) structural dynamics, and (3) seismic hazard and risk analysis. To protect building structures from earthquakes, it is necessary to conduct seismic performance evaluations on structures with reliable methods and to retrofit these structures appropriately using the results of the seismic performance evaluation.

Mechanics of Structures and Materials XXIV

Mechanics of Structures and Materials XXIV PDF Author: Hong Hao
Publisher: CRC Press
ISBN: 1351850210
Category : Science
Languages : en
Pages : 1966

Book Description
Mechanics of Structures and Materials: Advancements and Challenges is a collection of peer-reviewed papers presented at the 24th Australasian Conference on the Mechanics of Structures and Materials (ACMSM24, Curtin University, Perth, Western Australia, 6-9 December 2016). The contributions from academics, researchers and practising engineers from Australasian, Asia-pacific region and around the world, cover a wide range of topics, including: • Structural mechanics • Computational mechanics • Reinforced and prestressed concrete structures • Steel structures • Composite structures • Civil engineering materials • Fire engineering • Coastal and offshore structures • Dynamic analysis of structures • Structural health monitoring and damage identification • Structural reliability analysis and design • Structural optimization • Fracture and damage mechanics • Soil mechanics and foundation engineering • Pavement materials and technology • Shock and impact loading • Earthquake loading • Traffic and other man-made loadings • Wave and wind loading • Thermal effects • Design codes Mechanics of Structures and Materials: Advancements and Challenges will be of interest to academics and professionals involved in Structural Engineering and Materials Science.