Author: Jack Porteous
Publisher: John Wiley & Sons
ISBN: 047069792X
Category : Technology & Engineering
Languages : en
Pages : 556
Book Description
Structural Timber Design to Eurocode 5 is a comprehensive book which provides practising engineers and specialist contractors with detailed information and in-depth guidance on the design of timber structures based on the common rules and rules for buildings in Eurocode 5 - Part 1-1. It will also be of interest to undergraduate and postgraduate students of civil and structural engineering. The book provides a step-by-step approach to the design of all of the most commonly used timber elements and connections using solid timber, glued laminated timber or wood based structural products. It features numerous detailed worked examples, and incorporates the requirements of the UK National Annex. It covers the strength and stiffness properties of timber and its reconstituted and engineered products; the key requirements of Eurocode 0, Eurocode 1 and Eurocode 5 - Part 1-1; the design of beams and columns of solid timber, glued laminated, composite and thin-webbed sections; the lateral stability requirements of timber structures; and the design of mechanical connections subjected to lateral and/or axial forces as well as rigid and semi-rigid connections subjected to a moment. The Authors Jack Porteous is a consulting engineer specialising in timber engineering. He is a Chartered Engineer, Fellow of the Institution of Civil Engineers and Member of the Institution of Structural Engineers. He is a visiting scholar and lecturer in timber engineering at Napier University. Abdy Kermani is the Professor of Timber Engineering and R&D consultant at Napier University. He is a Chartered Engineer, Member of the Institution of Structural Engineers and Fellow of the Institute of Wood Science with over 20 years' experience in civil and structural engineering research, teaching and practice. The authors have led several research and development programmes on the structural use of timber and its reconstituted products. Their research work in timber engineering is internationally recognised and published widely. Also of Interest Timber Designers' Manual Third Edition E.C. Ozelton & J.A. Baird Paperback 978 14051 4671 5 Cover design by Garth Stewart
Structural Timber Design to Eurocode 5
Author: Jack Porteous
Publisher: John Wiley & Sons
ISBN: 047069792X
Category : Technology & Engineering
Languages : en
Pages : 556
Book Description
Structural Timber Design to Eurocode 5 is a comprehensive book which provides practising engineers and specialist contractors with detailed information and in-depth guidance on the design of timber structures based on the common rules and rules for buildings in Eurocode 5 - Part 1-1. It will also be of interest to undergraduate and postgraduate students of civil and structural engineering. The book provides a step-by-step approach to the design of all of the most commonly used timber elements and connections using solid timber, glued laminated timber or wood based structural products. It features numerous detailed worked examples, and incorporates the requirements of the UK National Annex. It covers the strength and stiffness properties of timber and its reconstituted and engineered products; the key requirements of Eurocode 0, Eurocode 1 and Eurocode 5 - Part 1-1; the design of beams and columns of solid timber, glued laminated, composite and thin-webbed sections; the lateral stability requirements of timber structures; and the design of mechanical connections subjected to lateral and/or axial forces as well as rigid and semi-rigid connections subjected to a moment. The Authors Jack Porteous is a consulting engineer specialising in timber engineering. He is a Chartered Engineer, Fellow of the Institution of Civil Engineers and Member of the Institution of Structural Engineers. He is a visiting scholar and lecturer in timber engineering at Napier University. Abdy Kermani is the Professor of Timber Engineering and R&D consultant at Napier University. He is a Chartered Engineer, Member of the Institution of Structural Engineers and Fellow of the Institute of Wood Science with over 20 years' experience in civil and structural engineering research, teaching and practice. The authors have led several research and development programmes on the structural use of timber and its reconstituted products. Their research work in timber engineering is internationally recognised and published widely. Also of Interest Timber Designers' Manual Third Edition E.C. Ozelton & J.A. Baird Paperback 978 14051 4671 5 Cover design by Garth Stewart
Publisher: John Wiley & Sons
ISBN: 047069792X
Category : Technology & Engineering
Languages : en
Pages : 556
Book Description
Structural Timber Design to Eurocode 5 is a comprehensive book which provides practising engineers and specialist contractors with detailed information and in-depth guidance on the design of timber structures based on the common rules and rules for buildings in Eurocode 5 - Part 1-1. It will also be of interest to undergraduate and postgraduate students of civil and structural engineering. The book provides a step-by-step approach to the design of all of the most commonly used timber elements and connections using solid timber, glued laminated timber or wood based structural products. It features numerous detailed worked examples, and incorporates the requirements of the UK National Annex. It covers the strength and stiffness properties of timber and its reconstituted and engineered products; the key requirements of Eurocode 0, Eurocode 1 and Eurocode 5 - Part 1-1; the design of beams and columns of solid timber, glued laminated, composite and thin-webbed sections; the lateral stability requirements of timber structures; and the design of mechanical connections subjected to lateral and/or axial forces as well as rigid and semi-rigid connections subjected to a moment. The Authors Jack Porteous is a consulting engineer specialising in timber engineering. He is a Chartered Engineer, Fellow of the Institution of Civil Engineers and Member of the Institution of Structural Engineers. He is a visiting scholar and lecturer in timber engineering at Napier University. Abdy Kermani is the Professor of Timber Engineering and R&D consultant at Napier University. He is a Chartered Engineer, Member of the Institution of Structural Engineers and Fellow of the Institute of Wood Science with over 20 years' experience in civil and structural engineering research, teaching and practice. The authors have led several research and development programmes on the structural use of timber and its reconstituted products. Their research work in timber engineering is internationally recognised and published widely. Also of Interest Timber Designers' Manual Third Edition E.C. Ozelton & J.A. Baird Paperback 978 14051 4671 5 Cover design by Garth Stewart
Seismic Rehabilitation of Existing Buildings
Author: American Society of Civil Engineers
Publisher: ASCE Publications
ISBN:
Category : Architecture
Languages : en
Pages : 436
Book Description
Standard ASCE/SEI 41-06 presents the latest generation of performance-based seismic rehabilitation methodology.
Publisher: ASCE Publications
ISBN:
Category : Architecture
Languages : en
Pages : 436
Book Description
Standard ASCE/SEI 41-06 presents the latest generation of performance-based seismic rehabilitation methodology.
Shape Memory Alloys for Seismic Resilience
Author: Cheng Fang
Publisher: Springer
ISBN: 9811370400
Category : Technology & Engineering
Languages : en
Pages : 298
Book Description
This book introduces readers to the fundamental properties and practical applications of shape memory alloys (SMAs) from the perspective of seismic engineering. It objectively discusses the superiority of this novel class of materials, which could potentially overcome the limitations of conventional seismic control technologies. The results, vividly presented in the form of tables and figures, are demonstrated with rigorous experimental verifications, supplemented by comprehensive numerical and analytical investigations. The book allows readers to gain an in-depth understanding of the working mechanisms of various SMA-based structural devices and members, including beam-to-column connections, dampers, and braces, while also providing them with a broader vision of next-generation, performance-based seismic design for novel adaptive structural systems. Helping to bridge the gap between material science and structural engineering, it also sheds light on the potential of commercializing SMA products in the construction industry. The cutting-edge research highlighted here provides technical incentives for design professionals, contractors, and building officials to use high-performance and smart materials in structural design, helping them stay at the forefront of construction technology.
Publisher: Springer
ISBN: 9811370400
Category : Technology & Engineering
Languages : en
Pages : 298
Book Description
This book introduces readers to the fundamental properties and practical applications of shape memory alloys (SMAs) from the perspective of seismic engineering. It objectively discusses the superiority of this novel class of materials, which could potentially overcome the limitations of conventional seismic control technologies. The results, vividly presented in the form of tables and figures, are demonstrated with rigorous experimental verifications, supplemented by comprehensive numerical and analytical investigations. The book allows readers to gain an in-depth understanding of the working mechanisms of various SMA-based structural devices and members, including beam-to-column connections, dampers, and braces, while also providing them with a broader vision of next-generation, performance-based seismic design for novel adaptive structural systems. Helping to bridge the gap between material science and structural engineering, it also sheds light on the potential of commercializing SMA products in the construction industry. The cutting-edge research highlighted here provides technical incentives for design professionals, contractors, and building officials to use high-performance and smart materials in structural design, helping them stay at the forefront of construction technology.
National Earthquake Resilience
Author: National Research Council
Publisher: National Academies Press
ISBN: 0309186773
Category : Science
Languages : en
Pages : 197
Book Description
The United States will certainly be subject to damaging earthquakes in the future. Some of these earthquakes will occur in highly populated and vulnerable areas. Coping with moderate earthquakes is not a reliable indicator of preparedness for a major earthquake in a populated area. The recent, disastrous, magnitude-9 earthquake that struck northern Japan demonstrates the threat that earthquakes pose. Moreover, the cascading nature of impacts-the earthquake causing a tsunami, cutting electrical power supplies, and stopping the pumps needed to cool nuclear reactors-demonstrates the potential complexity of an earthquake disaster. Such compound disasters can strike any earthquake-prone populated area. National Earthquake Resilience presents a roadmap for increasing our national resilience to earthquakes. The National Earthquake Hazards Reduction Program (NEHRP) is the multi-agency program mandated by Congress to undertake activities to reduce the effects of future earthquakes in the United States. The National Institute of Standards and Technology (NIST)-the lead NEHRP agency-commissioned the National Research Council (NRC) to develop a roadmap for earthquake hazard and risk reduction in the United States that would be based on the goals and objectives for achieving national earthquake resilience described in the 2008 NEHRP Strategic Plan. National Earthquake Resilience does this by assessing the activities and costs that would be required for the nation to achieve earthquake resilience in 20 years. National Earthquake Resilience interprets resilience broadly to incorporate engineering/science (physical), social/economic (behavioral), and institutional (governing) dimensions. Resilience encompasses both pre-disaster preparedness activities and post-disaster response. In combination, these will enhance the robustness of communities in all earthquake-vulnerable regions of our nation so that they can function adequately following damaging earthquakes. While National Earthquake Resilience is written primarily for the NEHRP, it also speaks to a broader audience of policy makers, earth scientists, and emergency managers.
Publisher: National Academies Press
ISBN: 0309186773
Category : Science
Languages : en
Pages : 197
Book Description
The United States will certainly be subject to damaging earthquakes in the future. Some of these earthquakes will occur in highly populated and vulnerable areas. Coping with moderate earthquakes is not a reliable indicator of preparedness for a major earthquake in a populated area. The recent, disastrous, magnitude-9 earthquake that struck northern Japan demonstrates the threat that earthquakes pose. Moreover, the cascading nature of impacts-the earthquake causing a tsunami, cutting electrical power supplies, and stopping the pumps needed to cool nuclear reactors-demonstrates the potential complexity of an earthquake disaster. Such compound disasters can strike any earthquake-prone populated area. National Earthquake Resilience presents a roadmap for increasing our national resilience to earthquakes. The National Earthquake Hazards Reduction Program (NEHRP) is the multi-agency program mandated by Congress to undertake activities to reduce the effects of future earthquakes in the United States. The National Institute of Standards and Technology (NIST)-the lead NEHRP agency-commissioned the National Research Council (NRC) to develop a roadmap for earthquake hazard and risk reduction in the United States that would be based on the goals and objectives for achieving national earthquake resilience described in the 2008 NEHRP Strategic Plan. National Earthquake Resilience does this by assessing the activities and costs that would be required for the nation to achieve earthquake resilience in 20 years. National Earthquake Resilience interprets resilience broadly to incorporate engineering/science (physical), social/economic (behavioral), and institutional (governing) dimensions. Resilience encompasses both pre-disaster preparedness activities and post-disaster response. In combination, these will enhance the robustness of communities in all earthquake-vulnerable regions of our nation so that they can function adequately following damaging earthquakes. While National Earthquake Resilience is written primarily for the NEHRP, it also speaks to a broader audience of policy makers, earth scientists, and emergency managers.
Quantification of Building Seismic Performance Factors
Author:
Publisher:
ISBN:
Category : Building laws
Languages : en
Pages : 424
Book Description
This report describes a recommended methodology for reliably quantifying building system performance and response parameters for use in seismic design. The recommended methodology (referred to herein as the Methodology) provides a rational basis for establishing global seismic performance factors (SPFs), including the response modification coefficient (R factor), the system overstrength factor, and deflection amplification factor (Cd), of new seismic-force-resisting systems proposed for inclusion in model building codes. The purpose of this Methodology is to provide a rational basis for determining building seismic performance factors that, when properly implemented in the seismic design process, will result in equivalent safety against collapse in an earthquake, comparable to the inherent safety against collapse intended by current seismic codes, for buildings with different seismic-force-resisting systems.
Publisher:
ISBN:
Category : Building laws
Languages : en
Pages : 424
Book Description
This report describes a recommended methodology for reliably quantifying building system performance and response parameters for use in seismic design. The recommended methodology (referred to herein as the Methodology) provides a rational basis for establishing global seismic performance factors (SPFs), including the response modification coefficient (R factor), the system overstrength factor, and deflection amplification factor (Cd), of new seismic-force-resisting systems proposed for inclusion in model building codes. The purpose of this Methodology is to provide a rational basis for determining building seismic performance factors that, when properly implemented in the seismic design process, will result in equivalent safety against collapse in an earthquake, comparable to the inherent safety against collapse intended by current seismic codes, for buildings with different seismic-force-resisting systems.
Tentative Provisions for the Development of Seismic Regulations for Buildings
Author: Applied Technology Council
Publisher:
ISBN:
Category : Buildings
Languages : en
Pages : 556
Book Description
Publisher:
ISBN:
Category : Buildings
Languages : en
Pages : 556
Book Description
Introduction to Structural Motion Control
Author: Jerome J. Connor
Publisher: Prentice Hall
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 720
Book Description
This book covers the fundamentals of electrical system design commonly found in residential, commercial, and industrial occupancies. The emphasis is on practical, real-world applications, and stresses designing electrical systems in accordance with the National Electrical Code(r) (NEC(r)). This book leads the reader through topics starting with the basics of electrical system design through more advanced subjects such as voltage drop, short circuit, coordination, and harmonics. For electrical designers and electrical engineers.
Publisher: Prentice Hall
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 720
Book Description
This book covers the fundamentals of electrical system design commonly found in residential, commercial, and industrial occupancies. The emphasis is on practical, real-world applications, and stresses designing electrical systems in accordance with the National Electrical Code(r) (NEC(r)). This book leads the reader through topics starting with the basics of electrical system design through more advanced subjects such as voltage drop, short circuit, coordination, and harmonics. For electrical designers and electrical engineers.
NEHRP Guidelines for the Seismic Rehabilitation of Buildings
Designing for Earthquakes
Author: Federal Emergency Management Agency
Publisher: www.Militarybookshop.CompanyUK
ISBN: 9781782661535
Category : Science
Languages : en
Pages : 392
Book Description
This full color manual is intended to explain the principles of seismic design for those without a technical background in engineering and seismology. The primary intended audience is that of architects, and includes practicing architects, architectural students and faculty in architectural schools who teach structures and seismic design. For this reason the text and graphics are focused on those aspects of seismic design that are important for the architect to know.
Publisher: www.Militarybookshop.CompanyUK
ISBN: 9781782661535
Category : Science
Languages : en
Pages : 392
Book Description
This full color manual is intended to explain the principles of seismic design for those without a technical background in engineering and seismology. The primary intended audience is that of architects, and includes practicing architects, architectural students and faculty in architectural schools who teach structures and seismic design. For this reason the text and graphics are focused on those aspects of seismic design that are important for the architect to know.
Energy Dissipation with Slotted Bolted Connections
Author: Carl E. Grigorian
Publisher:
ISBN:
Category : Bolted joints
Languages : en
Pages : 246
Book Description
Publisher:
ISBN:
Category : Bolted joints
Languages : en
Pages : 246
Book Description