Author: Tilman Plehn
Publisher: Springer
ISBN: 3319059424
Category : Science
Languages : en
Pages : 340
Book Description
With the discovery of the Higgs boson, the LHC experiments have closed the most important gap in our understanding of fundamental interactions, confirming that such interactions between elementary particles can be described by quantum field theory, more specifically by a renormalizable gauge theory. This theory is a priori valid for arbitrarily high energy scales and does not require an ultraviolet completion. Yet, when trying to apply the concrete knowledge of quantum field theory to actual LHC physics - in particular to the Higgs sector and certain regimes of QCD - one inevitably encounters an intricate maze of phenomenological know-how, common lore and other, often historically developed intuitions about what works and what doesn’t. These lectures cover three aspects to help understand LHC results in the Higgs sector and in searches for physics beyond the Standard Model: they discuss the many facets of Higgs physics, which is at the core of this significantly expanded second edition; then QCD, to the degree relevant for LHC measurements; as well as further standard phenomenological background knowledge. They are intended to serve as a brief but sufficiently detailed primer on LHC physics to enable graduate students and all newcomers to the field to find their way through the more advanced literature, and to help those starting to work in this very timely and exciting field of research. Advanced readers will benefit from this course-based text for their own lectures and seminars. .
Lectures on LHC Physics
Author: Tilman Plehn
Publisher: Springer
ISBN: 3319059424
Category : Science
Languages : en
Pages : 340
Book Description
With the discovery of the Higgs boson, the LHC experiments have closed the most important gap in our understanding of fundamental interactions, confirming that such interactions between elementary particles can be described by quantum field theory, more specifically by a renormalizable gauge theory. This theory is a priori valid for arbitrarily high energy scales and does not require an ultraviolet completion. Yet, when trying to apply the concrete knowledge of quantum field theory to actual LHC physics - in particular to the Higgs sector and certain regimes of QCD - one inevitably encounters an intricate maze of phenomenological know-how, common lore and other, often historically developed intuitions about what works and what doesn’t. These lectures cover three aspects to help understand LHC results in the Higgs sector and in searches for physics beyond the Standard Model: they discuss the many facets of Higgs physics, which is at the core of this significantly expanded second edition; then QCD, to the degree relevant for LHC measurements; as well as further standard phenomenological background knowledge. They are intended to serve as a brief but sufficiently detailed primer on LHC physics to enable graduate students and all newcomers to the field to find their way through the more advanced literature, and to help those starting to work in this very timely and exciting field of research. Advanced readers will benefit from this course-based text for their own lectures and seminars. .
Publisher: Springer
ISBN: 3319059424
Category : Science
Languages : en
Pages : 340
Book Description
With the discovery of the Higgs boson, the LHC experiments have closed the most important gap in our understanding of fundamental interactions, confirming that such interactions between elementary particles can be described by quantum field theory, more specifically by a renormalizable gauge theory. This theory is a priori valid for arbitrarily high energy scales and does not require an ultraviolet completion. Yet, when trying to apply the concrete knowledge of quantum field theory to actual LHC physics - in particular to the Higgs sector and certain regimes of QCD - one inevitably encounters an intricate maze of phenomenological know-how, common lore and other, often historically developed intuitions about what works and what doesn’t. These lectures cover three aspects to help understand LHC results in the Higgs sector and in searches for physics beyond the Standard Model: they discuss the many facets of Higgs physics, which is at the core of this significantly expanded second edition; then QCD, to the degree relevant for LHC measurements; as well as further standard phenomenological background knowledge. They are intended to serve as a brief but sufficiently detailed primer on LHC physics to enable graduate students and all newcomers to the field to find their way through the more advanced literature, and to help those starting to work in this very timely and exciting field of research. Advanced readers will benefit from this course-based text for their own lectures and seminars. .
Yet Another Introduction to Dark Matter
Author: Martin Bauer
Publisher: Springer
ISBN: 3030162346
Category : Science
Languages : en
Pages : 183
Book Description
Dark matter is a frequently discussed topic in contemporary particle physics. Written strictly in the language of particle physics and quantum field theory, these course-based lecture notes focus on a set of standard calculations that students need in order to understand weakly interacting dark matter candidates. After introducing some general features of these dark matter agents and their main competitors, the Higgs portal scalar and supersymmetric neutralinos are introduced as our default models. In turn, this serves as a basis for exploring four experimental aspects: the dark matter relic density extracted from the cosmic microwave background; indirect detection including the Fermi galactic center excess; direct detection; and collider searches. Alternative approaches, like an effective theory of dark matter and simplified models, naturally follow from the discussions of these four experimental directions.
Publisher: Springer
ISBN: 3030162346
Category : Science
Languages : en
Pages : 183
Book Description
Dark matter is a frequently discussed topic in contemporary particle physics. Written strictly in the language of particle physics and quantum field theory, these course-based lecture notes focus on a set of standard calculations that students need in order to understand weakly interacting dark matter candidates. After introducing some general features of these dark matter agents and their main competitors, the Higgs portal scalar and supersymmetric neutralinos are introduced as our default models. In turn, this serves as a basis for exploring four experimental aspects: the dark matter relic density extracted from the cosmic microwave background; indirect detection including the Fermi galactic center excess; direct detection; and collider searches. Alternative approaches, like an effective theory of dark matter and simplified models, naturally follow from the discussions of these four experimental directions.
Multiple Parton Interactions At The Lhc
Author: Paolo Bartalini
Publisher: World Scientific Publishing
ISBN: 981322777X
Category : Science
Languages : en
Pages : 471
Book Description
Many high-energy collider experiments (including the current Large Hadron Collider at CERN) involve the collision of hadrons. Hadrons are composite particles consisting of partons (quarks and gluons), and this means that in any hadron-hadron collision there will typically be multiple collisions of the constituents — i.e. multiple parton interactions (MPI). Understanding the nature of the MPI is important in terms of searching for new physics in the products of the scatters, and also in its own right to gain a greater understanding of hadron structure. This book aims at providing a pedagogical introduction and a comprehensive review of different research lines linked by an involvement of MPI phenomena. It is written by pioneers as well as young leading scientists, and reviews both experimental findings and theoretical developments, discussing also the remaining open issues.
Publisher: World Scientific Publishing
ISBN: 981322777X
Category : Science
Languages : en
Pages : 471
Book Description
Many high-energy collider experiments (including the current Large Hadron Collider at CERN) involve the collision of hadrons. Hadrons are composite particles consisting of partons (quarks and gluons), and this means that in any hadron-hadron collision there will typically be multiple collisions of the constituents — i.e. multiple parton interactions (MPI). Understanding the nature of the MPI is important in terms of searching for new physics in the products of the scatters, and also in its own right to gain a greater understanding of hadron structure. This book aims at providing a pedagogical introduction and a comprehensive review of different research lines linked by an involvement of MPI phenomena. It is written by pioneers as well as young leading scientists, and reviews both experimental findings and theoretical developments, discussing also the remaining open issues.
Inorganic Membranes: Synthesis, Characterization and Applications
Author: Reyes Mallada
Publisher: Elsevier
ISBN: 0080558003
Category : Technology & Engineering
Languages : en
Pages : 477
Book Description
Approx.480 pagesApprox.480 pages
Publisher: Elsevier
ISBN: 0080558003
Category : Technology & Engineering
Languages : en
Pages : 477
Book Description
Approx.480 pagesApprox.480 pages
Lasers and Mass Spectrometry
Author: David M. Lubman
Publisher: Oxford University Press
ISBN: 0195363140
Category : Science
Languages : en
Pages : 560
Book Description
Contributors to this volume focus on the fundamentals of the technique of analyzing material based on the atomic weight of the species, using the power and definition of lasers to enable measurement of smaller quantities and more finely localized particles. Each chapter deals with a particular application area and should be sufficient to form an entry point for the utilization of mass spectrometry by graduate students and researchers. The book provides the first full discussion of the new techniques of laser applications in the field.
Publisher: Oxford University Press
ISBN: 0195363140
Category : Science
Languages : en
Pages : 560
Book Description
Contributors to this volume focus on the fundamentals of the technique of analyzing material based on the atomic weight of the species, using the power and definition of lasers to enable measurement of smaller quantities and more finely localized particles. Each chapter deals with a particular application area and should be sufficient to form an entry point for the utilization of mass spectrometry by graduate students and researchers. The book provides the first full discussion of the new techniques of laser applications in the field.
Nanosensors for Chemical and Biological Applications
Author: Kevin C. Honeychurch
Publisher: Elsevier
ISBN: 0857096729
Category : Science
Languages : en
Pages : 373
Book Description
Nano-scale materials are proving attractive for a new generation of devices, due to their unique properties. They are used to create fast-responding sensors with good sensitivity and selectivity for the detection of chemical species and biological agents. Nanosensors for Chemical and Biological Applications provides an overview of developments brought about by the application of nanotechnology for both chemical and biological sensor development. Part one addresses electrochemical nanosensors and their applications for enhanced biomedical sensing, including blood glucose and trace metal ion analysis. Part two goes on to discuss spectrographic nanosensors, with chapters on the use of nanoparticle sensors for biochemical and environmental sensing and other techniques for detecting nanoparticles in the environment. Nanosensors for Chemical and Biological Applications serves as a standard reference for R&D managers in a range of industrial sectors, including nanotechnology, electronics, biotechnology, magnetic and optical materials, and sensors technology, as well as researchers and academics with an interest in these fields. - Reviews the range electrochemical nanosensors, including the use of carbon nanotubes, glucose nanosensors, chemiresistor sensors using metal oxides, and nanoparticles - Discusses spectrographic nanosensors, such as surface-enhanced Raman scattering (SERS) nanoparticle sensors, the use of coated gold nanoparticles, and semiconductor quantum dots
Publisher: Elsevier
ISBN: 0857096729
Category : Science
Languages : en
Pages : 373
Book Description
Nano-scale materials are proving attractive for a new generation of devices, due to their unique properties. They are used to create fast-responding sensors with good sensitivity and selectivity for the detection of chemical species and biological agents. Nanosensors for Chemical and Biological Applications provides an overview of developments brought about by the application of nanotechnology for both chemical and biological sensor development. Part one addresses electrochemical nanosensors and their applications for enhanced biomedical sensing, including blood glucose and trace metal ion analysis. Part two goes on to discuss spectrographic nanosensors, with chapters on the use of nanoparticle sensors for biochemical and environmental sensing and other techniques for detecting nanoparticles in the environment. Nanosensors for Chemical and Biological Applications serves as a standard reference for R&D managers in a range of industrial sectors, including nanotechnology, electronics, biotechnology, magnetic and optical materials, and sensors technology, as well as researchers and academics with an interest in these fields. - Reviews the range electrochemical nanosensors, including the use of carbon nanotubes, glucose nanosensors, chemiresistor sensors using metal oxides, and nanoparticles - Discusses spectrographic nanosensors, such as surface-enhanced Raman scattering (SERS) nanoparticle sensors, the use of coated gold nanoparticles, and semiconductor quantum dots
Aerogels Handbook
Author: Michel Andre Aegerter
Publisher: Springer Science & Business Media
ISBN: 1441975896
Category : Technology & Engineering
Languages : en
Pages : 929
Book Description
Aerogels are the lightest solids known. Up to 1000 times lighter than glass and with a density as low as only four times that of air, they show very high thermal, electrical and acoustic insulation values and hold many entries in Guinness World Records. Originally based on silica, R&D efforts have extended this class of materials to non-silicate inorganic oxides, natural and synthetic organic polymers, carbon, metal and ceramic materials, etc. Composite systems involving polymer-crosslinked aerogels and interpenetrating hybrid networks have been developed and exhibit remarkable mechanical strength and flexibility. Even more exotic aerogels based on clays, chalcogenides, phosphides, quantum dots, and biopolymers such as chitosan are opening new applications for the construction, transportation, energy, defense and healthcare industries. Applications in electronics, chemistry, mechanics, engineering, energy production and storage, sensors, medicine, nanotechnology, military and aerospace, oil and gas recovery, thermal insulation and household uses are being developed with an estimated annual market growth rate of around 70% until 2015. The Aerogels Handbook summarizes state-of-the-art developments and processing of inorganic, organic, and composite aerogels, including the most important methods of synthesis, characterization as well as their typical applications and their possible market impact. Readers will find an exhaustive overview of all aerogel materials known today, their fabrication, upscaling aspects, physical and chemical properties, and most recent advances towards applications and commercial products, some of which are commercially available today. Key Features: •Edited and written by recognized worldwide leaders in the field •Appeals to a broad audience of materials scientists, chemists, and engineers in academic research and industrial R&D •Covers inorganic, organic, and composite aerogels •Describes military, aerospace, building industry, household, environmental, energy, and biomedical applications among others
Publisher: Springer Science & Business Media
ISBN: 1441975896
Category : Technology & Engineering
Languages : en
Pages : 929
Book Description
Aerogels are the lightest solids known. Up to 1000 times lighter than glass and with a density as low as only four times that of air, they show very high thermal, electrical and acoustic insulation values and hold many entries in Guinness World Records. Originally based on silica, R&D efforts have extended this class of materials to non-silicate inorganic oxides, natural and synthetic organic polymers, carbon, metal and ceramic materials, etc. Composite systems involving polymer-crosslinked aerogels and interpenetrating hybrid networks have been developed and exhibit remarkable mechanical strength and flexibility. Even more exotic aerogels based on clays, chalcogenides, phosphides, quantum dots, and biopolymers such as chitosan are opening new applications for the construction, transportation, energy, defense and healthcare industries. Applications in electronics, chemistry, mechanics, engineering, energy production and storage, sensors, medicine, nanotechnology, military and aerospace, oil and gas recovery, thermal insulation and household uses are being developed with an estimated annual market growth rate of around 70% until 2015. The Aerogels Handbook summarizes state-of-the-art developments and processing of inorganic, organic, and composite aerogels, including the most important methods of synthesis, characterization as well as their typical applications and their possible market impact. Readers will find an exhaustive overview of all aerogel materials known today, their fabrication, upscaling aspects, physical and chemical properties, and most recent advances towards applications and commercial products, some of which are commercially available today. Key Features: •Edited and written by recognized worldwide leaders in the field •Appeals to a broad audience of materials scientists, chemists, and engineers in academic research and industrial R&D •Covers inorganic, organic, and composite aerogels •Describes military, aerospace, building industry, household, environmental, energy, and biomedical applications among others
Comprehensive Foodomics
Author:
Publisher: Elsevier
ISBN: 0128163968
Category : Science
Languages : en
Pages : 2444
Book Description
Comprehensive Foodomics, Three Volume Set offers a definitive collection of over 150 articles that provide researchers with innovative answers to crucial questions relating to food quality, safety and its vital and complex links to our health. Topics covered include transcriptomics, proteomics, metabolomics, genomics, green foodomics, epigenetics and noncoding RNA, food safety, food bioactivity and health, food quality and traceability, data treatment and systems biology. Logically structured into 10 focused sections, each article is authored by world leading scientists who cover the whole breadth of Omics and related technologies, including the latest advances and applications. By bringing all this information together in an easily navigable reference, food scientists and nutritionists in both academia and industry will find it the perfect, modern day compendium for frequent reference. List of sections and Section Editors: Genomics - Olivia McAuliffe, Dept of Food Biosciences, Moorepark, Fermoy, Co. Cork, Ireland Epigenetics & Noncoding RNA - Juan Cui, Department of Computer Science & Engineering, University of Nebraska-Lincoln, Lincoln, NE Transcriptomics - Robert Henry, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, Australia Proteomics - Jens Brockmeyer, Institute of Biochemistry and Technical Biochemistry, University Stuttgart, Germany Metabolomics - Philippe Schmitt-Kopplin, Research Unit Analytical BioGeoChemistry, Neuherberg, Germany Omics data treatment, System Biology and Foodomics - Carlos Leon Canseco, Visiting Professor, Biomedical Engineering, Universidad Carlos III de Madrid Green Foodomics - Elena Ibanez, Foodomics Lab, CIAL, CSIC, Madrid, Spain Food safety and Foodomics - Djuro Josic, Professor Medicine (Research) Warren Alpert Medical School, Brown University, Providence, RI, USA & Sandra Kraljevic Pavelic, University of Rijeka, Department of Biotechnology, Rijeka, Croatia Food Quality, Traceability and Foodomics - Daniel Cozzolino, Centre for Nutrition and Food Sciences, The University of Queensland, Queensland, Australia Food Bioactivity, Health and Foodomics - Miguel Herrero, Department of Bioactivity and Food Analysis, Foodomics Lab, CIAL, CSIC, Madrid, Spain Brings all relevant foodomics information together in one place, offering readers a ‘one-stop,’ comprehensive resource for access to a wealth of information Includes articles written by academics and practitioners from various fields and regions Provides an ideal resource for students, researchers and professionals who need to find relevant information quickly and easily Includes content from high quality authors from across the globe
Publisher: Elsevier
ISBN: 0128163968
Category : Science
Languages : en
Pages : 2444
Book Description
Comprehensive Foodomics, Three Volume Set offers a definitive collection of over 150 articles that provide researchers with innovative answers to crucial questions relating to food quality, safety and its vital and complex links to our health. Topics covered include transcriptomics, proteomics, metabolomics, genomics, green foodomics, epigenetics and noncoding RNA, food safety, food bioactivity and health, food quality and traceability, data treatment and systems biology. Logically structured into 10 focused sections, each article is authored by world leading scientists who cover the whole breadth of Omics and related technologies, including the latest advances and applications. By bringing all this information together in an easily navigable reference, food scientists and nutritionists in both academia and industry will find it the perfect, modern day compendium for frequent reference. List of sections and Section Editors: Genomics - Olivia McAuliffe, Dept of Food Biosciences, Moorepark, Fermoy, Co. Cork, Ireland Epigenetics & Noncoding RNA - Juan Cui, Department of Computer Science & Engineering, University of Nebraska-Lincoln, Lincoln, NE Transcriptomics - Robert Henry, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, Australia Proteomics - Jens Brockmeyer, Institute of Biochemistry and Technical Biochemistry, University Stuttgart, Germany Metabolomics - Philippe Schmitt-Kopplin, Research Unit Analytical BioGeoChemistry, Neuherberg, Germany Omics data treatment, System Biology and Foodomics - Carlos Leon Canseco, Visiting Professor, Biomedical Engineering, Universidad Carlos III de Madrid Green Foodomics - Elena Ibanez, Foodomics Lab, CIAL, CSIC, Madrid, Spain Food safety and Foodomics - Djuro Josic, Professor Medicine (Research) Warren Alpert Medical School, Brown University, Providence, RI, USA & Sandra Kraljevic Pavelic, University of Rijeka, Department of Biotechnology, Rijeka, Croatia Food Quality, Traceability and Foodomics - Daniel Cozzolino, Centre for Nutrition and Food Sciences, The University of Queensland, Queensland, Australia Food Bioactivity, Health and Foodomics - Miguel Herrero, Department of Bioactivity and Food Analysis, Foodomics Lab, CIAL, CSIC, Madrid, Spain Brings all relevant foodomics information together in one place, offering readers a ‘one-stop,’ comprehensive resource for access to a wealth of information Includes articles written by academics and practitioners from various fields and regions Provides an ideal resource for students, researchers and professionals who need to find relevant information quickly and easily Includes content from high quality authors from across the globe
Lanthanide Luminescence
Author: Pekka Hänninen
Publisher: Springer Science & Business Media
ISBN: 3642210236
Category : Science
Languages : en
Pages : 392
Book Description
Lanthanides have fascinated scientists for more than two centuries now, and since efficient separation techniques were established roughly 50 years ago, they have increasingly found their way into industrial exploitation and our everyday lives. Numerous applications are based on their unique luminescent properties, which are highlighted in this volume. It presents established knowledge about the photophysical basics, relevant lanthanide probes or materials, and describes instrumentation-related aspects including chemical and physical sensors. The uses of lanthanides in bioanalysis and medicine are outlined, such as assays for in vitro diagnostics and research. All chapters were compiled by renowned scientists with a broad audience in mind, providing both beginners in the field and advanced researchers with comprehensive information on on the given subject.
Publisher: Springer Science & Business Media
ISBN: 3642210236
Category : Science
Languages : en
Pages : 392
Book Description
Lanthanides have fascinated scientists for more than two centuries now, and since efficient separation techniques were established roughly 50 years ago, they have increasingly found their way into industrial exploitation and our everyday lives. Numerous applications are based on their unique luminescent properties, which are highlighted in this volume. It presents established knowledge about the photophysical basics, relevant lanthanide probes or materials, and describes instrumentation-related aspects including chemical and physical sensors. The uses of lanthanides in bioanalysis and medicine are outlined, such as assays for in vitro diagnostics and research. All chapters were compiled by renowned scientists with a broad audience in mind, providing both beginners in the field and advanced researchers with comprehensive information on on the given subject.
Compact NMR
Author: Bernhard Blümich
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110374587
Category : Technology & Engineering
Languages : en
Pages : 305
Book Description
The goal of this book is to provide an introduction to the practical use of mobile NMR at a level as basic as the operation of a smart phone. Each description follows the same didactic pattern: introduction, basic theory, pulse sequences and parameters, beginners-level measurements, advanced-level measurements, and data processing. Nuclear Magnetic Resonance (NMR) spectroscopy is the most popular method for chemists to analyze molecular structures while Magnetic Resonance Imaging (MRI) is a non-invasive diagnostic tool for medical doctors that provides high-contrast images of biological tissue depicting the brain function and the beating heart. In both applications large super-conducting magnets are employed which magnetize atomic nuclei of an object positioned inside the magnet. Their circulating motion is interrogated by radio-frequency waves. Depending on the operating mode, the frequency spectrum provides the chemist with molecular information, the medical doctor with anatomic images, while the materials scientist is interested in NMR relaxation parameters, which scale with material properties and determine the contrast in magnetic resonance images. Recent advances in magnet technology led to a variety of small permanent magnets, by which NMR spectra, images, and relaxation parameters can be measured with mobile and low-cost instruments.
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110374587
Category : Technology & Engineering
Languages : en
Pages : 305
Book Description
The goal of this book is to provide an introduction to the practical use of mobile NMR at a level as basic as the operation of a smart phone. Each description follows the same didactic pattern: introduction, basic theory, pulse sequences and parameters, beginners-level measurements, advanced-level measurements, and data processing. Nuclear Magnetic Resonance (NMR) spectroscopy is the most popular method for chemists to analyze molecular structures while Magnetic Resonance Imaging (MRI) is a non-invasive diagnostic tool for medical doctors that provides high-contrast images of biological tissue depicting the brain function and the beating heart. In both applications large super-conducting magnets are employed which magnetize atomic nuclei of an object positioned inside the magnet. Their circulating motion is interrogated by radio-frequency waves. Depending on the operating mode, the frequency spectrum provides the chemist with molecular information, the medical doctor with anatomic images, while the materials scientist is interested in NMR relaxation parameters, which scale with material properties and determine the contrast in magnetic resonance images. Recent advances in magnet technology led to a variety of small permanent magnets, by which NMR spectra, images, and relaxation parameters can be measured with mobile and low-cost instruments.