Schramm–Loewner Evolution PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Schramm–Loewner Evolution PDF full book. Access full book title Schramm–Loewner Evolution by Antti Kemppainen. Download full books in PDF and EPUB format.

Schramm–Loewner Evolution

Schramm–Loewner Evolution PDF Author: Antti Kemppainen
Publisher: Springer
ISBN: 3319653296
Category : Science
Languages : en
Pages : 151

Book Description
This book is a short, but complete, introduction to the Loewner equation and the SLEs, which are a family of random fractal curves, as well as the relevant background in probability and complex analysis. The connection to statistical physics is also developed in the text in an example case. The book is based on a course (with the same title) lectured by the author. First three chapters are devoted to the background material, but at the same time, give the reader a good understanding on the overview on the subject and on some aspects of conformal invariance. The chapter on the Loewner equation develops in detail the connection of growing hulls and the differential equation satisfied by families of conformal maps. The Schramm–Loewner evolutions are defined and their basic properties are studied in the following chapter, and the regularity properties of random curves as well as scaling limits of discrete random curves are investigated in the final chapter. The book is aimed at graduate students or researchers who want to learn the subject fairly quickly.

Schramm–Loewner Evolution

Schramm–Loewner Evolution PDF Author: Antti Kemppainen
Publisher: Springer
ISBN: 3319653296
Category : Science
Languages : en
Pages : 151

Book Description
This book is a short, but complete, introduction to the Loewner equation and the SLEs, which are a family of random fractal curves, as well as the relevant background in probability and complex analysis. The connection to statistical physics is also developed in the text in an example case. The book is based on a course (with the same title) lectured by the author. First three chapters are devoted to the background material, but at the same time, give the reader a good understanding on the overview on the subject and on some aspects of conformal invariance. The chapter on the Loewner equation develops in detail the connection of growing hulls and the differential equation satisfied by families of conformal maps. The Schramm–Loewner evolutions are defined and their basic properties are studied in the following chapter, and the regularity properties of random curves as well as scaling limits of discrete random curves are investigated in the final chapter. The book is aimed at graduate students or researchers who want to learn the subject fairly quickly.

Conformally Invariant Processes in the Plane

Conformally Invariant Processes in the Plane PDF Author: Gregory F. Lawler
Publisher: American Mathematical Soc.
ISBN: 0821846248
Category : Mathematics
Languages : en
Pages : 258

Book Description
Presents an introduction to the conformally invariant processes that appear as scaling limits. This book covers such topics as stochastic integration, and complex Brownian motion and measures derived from Brownian motion. It is suitable for those interested in random processes and their applications in theoretical physics.

Selected Works of Oded Schramm

Selected Works of Oded Schramm PDF Author: Itai Benjamini
Publisher: Springer Science & Business Media
ISBN: 1441996753
Category : Mathematics
Languages : en
Pages : 1199

Book Description
This volume is dedicated to the memory of the late Oded Schramm (1961-2008), distinguished mathematician. Throughout his career, Schramm made profound and beautiful contributions to mathematics that will have a lasting influence. In these two volumes, Editors Itai Benjamini and Olle Häggström have collected some of his papers, supplemented with three survey papers by Steffen Rohde, Häggström and Cristophe Garban that further elucidate his work. The papers within are a representative collection that shows the breadth, depth, enthusiasm and clarity of his work, with sections on Geometry, Noise Sensitivity, Random Walks and Graph Limits, Percolation, and finally Schramm-Loewner Evolution. An introduction by the Editors and a comprehensive bibliography of Schramm's publications complete the volume. The book will be of especial interest to researchers in probability and geometry, and in the history of these subjects.

Bessel Processes, Schramm–Loewner Evolution, and the Dyson Model

Bessel Processes, Schramm–Loewner Evolution, and the Dyson Model PDF Author: Makoto Katori
Publisher: Springer
ISBN: 9811002754
Category : Science
Languages : en
Pages : 149

Book Description
The purpose of this book is to introduce two recent topics in mathematical physics and probability theory: the Schramm–Loewner evolution (SLE) and interacting particle systems related to random matrix theory. A typical example of the latter systems is Dyson's Brownian motion (BM) model. The SLE and Dyson's BM model may be considered as "children" of the Bessel process with parameter D, BES(D), and the SLE and Dyson's BM model as "grandchildren" of BM. In Chap. 1 the parenthood of BM in diffusion processes is clarified and BES(D) is defined for any D ≥ 1. Dependence of the BES(D) path on its initial value is represented by the Bessel flow. In Chap. 2 SLE is introduced as a complexification of BES(D). Rich mathematics and physics involved in SLE are due to the nontrivial dependence of the Bessel flow on D. From a result for the Bessel flow, Cardy's formula in Carleson's form is derived for SLE. In Chap. 3 Dyson's BM model with parameter β is introduced as a multivariate extension of BES(D) with the relation D = β + 1. The book concentrates on the case where β = 2 and calls this case simply the Dyson model.The Dyson model inherits the two aspects of BES(3); hence it has very strong solvability. That is, the process is proved to be determinantal in the sense that all spatio-temporal correlation functions are given by determinants, and all of them are controlled by a single function called the correlation kernel. From the determinantal structure of the Dyson model, the Tracy–Widom distribution is derived.

Non-Equilibrium Entropy and Irreversibility

Non-Equilibrium Entropy and Irreversibility PDF Author: C. Lindblad
Publisher: Springer Science & Business Media
ISBN: 9781402003202
Category : Science
Languages : en
Pages : 184

Book Description
The problem of deriving irreversible thermodynamics from the re versible microscopic dynamics has been on the agenda of theoreti cal physics for a century and has produced more papers than can be digested by any single scientist. Why add to this too long list with yet another work? The goal is definitely not to give a gen eral review of previous work in this field. My ambition is rather to present an approach differing in some key aspects from the stan dard treatments, and to develop it as far as possible using rather simple mathematical tools (mainly inequalities of various kinds). However, in the course of this work I have used a large number of results and ideas from the existing literature, and the reference list contains contributions from many different lines of research. As a consequence the reader may find the arguments a bit difficult to follow without some previous exposure to this set of problems.

Vertex Algebras and Algebraic Curves

Vertex Algebras and Algebraic Curves PDF Author: Edward Frenkel
Publisher: American Mathematical Soc.
ISBN: 0821836749
Category : Mathematics
Languages : en
Pages : 418

Book Description
Vertex algebras are algebraic objects that encapsulate the concept of operator product expansion from two-dimensional conformal field theory. Vertex algebras are fast becoming ubiquitous in many areas of modern mathematics, with applications to representation theory, algebraic geometry, the theory of finite groups, modular functions, topology, integrable systems, and combinatorics. This book is an introduction to the theory of vertex algebras with a particular emphasis on the relationship with the geometry of algebraic curves. The notion of a vertex algebra is introduced in a coordinate-independent way, so that vertex operators become well defined on arbitrary smooth algebraic curves, possibly equipped with additional data, such as a vector bundle. Vertex algebras then appear as the algebraic objects encoding the geometric structure of various moduli spaces associated with algebraic curves. Therefore they may be used to give a geometric interpretation of various questions of representation theory. The book contains many original results, introduces important new concepts, and brings new insights into the theory of vertex algebras. The authors have made a great effort to make the book self-contained and accessible to readers of all backgrounds. Reviewers of the first edition anticipated that it would have a long-lasting influence on this exciting field of mathematics and would be very useful for graduate students and researchers interested in the subject. This second edition, substantially improved and expanded, includes several new topics, in particular an introduction to the Beilinson-Drinfeld theory of factorization algebras and the geometric Langlands correspondence.

Conformal Maps And Geometry

Conformal Maps And Geometry PDF Author: Dmitry Beliaev
Publisher: World Scientific
ISBN: 178634615X
Category : Mathematics
Languages : en
Pages : 240

Book Description
'I very much enjoyed reading this book … Each chapter comes with well thought-out exercises, solutions to which are given at the end of the chapter. Conformal Maps and Geometry presents key topics in geometric function theory and the theory of univalent functions, and also prepares the reader to progress to study the SLE. It succeeds admirably on both counts.'MathSciNetGeometric function theory is one of the most interesting parts of complex analysis, an area that has become increasingly relevant as a key feature in the theory of Schramm-Loewner evolution.Though Riemann mapping theorem is frequently explored, there are few texts that discuss general theory of univalent maps, conformal invariants, and Loewner evolution. This textbook provides an accessible foundation of the theory of conformal maps and their connections with geometry.It offers a unique view of the field, as it is one of the first to discuss general theory of univalent maps at a graduate level, while introducing more complex theories of conformal invariants and extremal lengths. Conformal Maps and Geometry is an ideal resource for graduate courses in Complex Analysis or as an analytic prerequisite to study the theory of Schramm-Loewner evolution.

Probability on Graphs

Probability on Graphs PDF Author: Geoffrey Grimmett
Publisher: Cambridge University Press
ISBN: 1108542999
Category : Mathematics
Languages : en
Pages : 279

Book Description
This introduction to some of the principal models in the theory of disordered systems leads the reader through the basics, to the very edge of contemporary research, with the minimum of technical fuss. Topics covered include random walk, percolation, self-avoiding walk, interacting particle systems, uniform spanning tree, random graphs, as well as the Ising, Potts, and random-cluster models for ferromagnetism, and the Lorentz model for motion in a random medium. This new edition features accounts of major recent progress, including the exact value of the connective constant of the hexagonal lattice, and the critical point of the random-cluster model on the square lattice. The choice of topics is strongly motivated by modern applications, and focuses on areas that merit further research. Accessible to a wide audience of mathematicians and physicists, this book can be used as a graduate course text. Each chapter ends with a range of exercises.

Equilibrium Statistical Mechanics of Lattice Models

Equilibrium Statistical Mechanics of Lattice Models PDF Author: David A. Lavis
Publisher: Springer
ISBN: 9401794308
Category : Science
Languages : en
Pages : 801

Book Description
Most interesting and difficult problems in equilibrium statistical mechanics concern models which exhibit phase transitions. For graduate students and more experienced researchers this book provides an invaluable reference source of approximate and exact solutions for a comprehensive range of such models. Part I contains background material on classical thermodynamics and statistical mechanics, together with a classification and survey of lattice models. The geometry of phase transitions is described and scaling theory is used to introduce critical exponents and scaling laws. An introduction is given to finite-size scaling, conformal invariance and Schramm—Loewner evolution. Part II contains accounts of classical mean-field methods. The parallels between Landau expansions and catastrophe theory are discussed and Ginzburg--Landau theory is introduced. The extension of mean-field theory to higher-orders is explored using the Kikuchi--Hijmans--De Boer hierarchy of approximations. In Part III the use of algebraic, transformation and decoration methods to obtain exact system information is considered. This is followed by an account of the use of transfer matrices for the location of incipient phase transitions in one-dimensionally infinite models and for exact solutions for two-dimensionally infinite systems. The latter is applied to a general analysis of eight-vertex models yielding as special cases the two-dimensional Ising model and the six-vertex model. The treatment of exact results ends with a discussion of dimer models. In Part IV series methods and real-space renormalization group transformations are discussed. The use of the De Neef—Enting finite-lattice method is described in detail and applied to the derivation of series for a number of model systems, in particular for the Potts model. The use of Pad\'e, differential and algebraic approximants to locate and analyze second- and first-order transitions is described. The realization of the ideas of scaling theory by the renormalization group is presented together with treatments of various approximation schemes including phenomenological renormalization. Part V of the book contains a collection of mathematical appendices intended to minimise the need to refer to other mathematical sources.

Do Not Erase

Do Not Erase PDF Author: Jessica Wynne
Publisher: Princeton University Press
ISBN: 0691222827
Category : Mathematics
Languages : en
Pages : 248

Book Description
A photographic exploration of mathematicians’ chalkboards “A mathematician, like a painter or poet, is a maker of patterns,” wrote the British mathematician G. H. Hardy. In Do Not Erase, photographer Jessica Wynne presents remarkable examples of this idea through images of mathematicians’ chalkboards. While other fields have replaced chalkboards with whiteboards and digital presentations, mathematicians remain loyal to chalk for puzzling out their ideas and communicating their research. Wynne offers more than one hundred stunning photographs of these chalkboards, gathered from a diverse group of mathematicians around the world. The photographs are accompanied by essays from each mathematician, reflecting on their work and processes. Together, pictures and words provide an illuminating meditation on the unique relationships among mathematics, art, and creativity. The mathematicians featured in this collection comprise exciting new voices alongside established figures, including Sun-Yung Alice Chang, Alain Connes, Misha Gromov, Andre Neves, Kasso Okoudjou, Peter Shor, Christina Sormani, Terence Tao, Claire Voisin, and many others. The companion essays give insights into how the chalkboard serves as a special medium for mathematical expression. The volume also includes an introduction by the author, an afterword by New Yorker writer Alec Wilkinson, and biographical information for each contributor. Do Not Erase is a testament to the myriad ways that mathematicians use their chalkboards to reveal the conceptual and visual beauty of their discipline—shapes, figures, formulas, and conjectures created through imagination, argument, and speculation.