Scattering By Obstacles And Potentials PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Scattering By Obstacles And Potentials PDF full book. Access full book title Scattering By Obstacles And Potentials by Alexander G Ramm. Download full books in PDF and EPUB format.

Scattering By Obstacles And Potentials

Scattering By Obstacles And Potentials PDF Author: Alexander G Ramm
Publisher: World Scientific
ISBN: 9813220988
Category : Science
Languages : en
Pages : 621

Book Description
The book is important as it contains results many of which are not available in the literature, except in the author's papers. Among other things, it gives uniqueness theorems for inverse scattering problems when the data are non-over-determined, numerical method for solving inverse scattering problems, a method (MRC) for solving direct scattering problem.

Scattering By Obstacles And Potentials

Scattering By Obstacles And Potentials PDF Author: Alexander G Ramm
Publisher: World Scientific
ISBN: 9813220988
Category : Science
Languages : en
Pages : 621

Book Description
The book is important as it contains results many of which are not available in the literature, except in the author's papers. Among other things, it gives uniqueness theorems for inverse scattering problems when the data are non-over-determined, numerical method for solving inverse scattering problems, a method (MRC) for solving direct scattering problem.

Canonical Problems in Scattering and Potential Theory Part 1

Canonical Problems in Scattering and Potential Theory Part 1 PDF Author: S.S. Vinogradov
Publisher: CRC Press
ISBN: 0849387078
Category : Mathematics
Languages : en
Pages : 393

Book Description
Although the analysis of scattering for closed bodies of simple geometric shape is well developed, structures with edges, cavities, or inclusions have seemed, until now, intractable to analytical methods. This two-volume set describes a breakthrough in analytical techniques for accurately determining diffraction from classes of canonical scatterers

The Inverse Problem of Scattering Theory

The Inverse Problem of Scattering Theory PDF Author: Z.S. Agranovich
Publisher: Courier Dover Publications
ISBN: 0486842495
Category : Mathematics
Languages : en
Pages : 307

Book Description
This monograph by two Soviet experts in mathematical physics was a major contribution to inverse scattering theory. The two-part treatment examines the boundary-value problem with and without singularities. 1963 edition.

Integral Equation Methods in Scattering Theory

Integral Equation Methods in Scattering Theory PDF Author: David Colton
Publisher: SIAM
ISBN: 1611973155
Category : Mathematics
Languages : en
Pages : 286

Book Description
This classic book provides a rigorous treatment of the Riesz?Fredholm theory of compact operators in dual systems, followed by a derivation of the jump relations and mapping properties of scalar and vector potentials in spaces of continuous and H?lder continuous functions. These results are then used to study scattering problems for the Helmholtz and Maxwell equations. Readers will benefit from a full discussion of the mapping properties of scalar and vector potentials in spaces of continuous and H?lder continuous functions, an in-depth treatment of the use of boundary integral equations to solve scattering problems for acoustic and electromagnetic waves, and an introduction to inverse scattering theory with an emphasis on the ill-posedness and nonlinearity of the inverse scattering problem.

Scattering by Obstacles

Scattering by Obstacles PDF Author: Alexander G. Ramm
Publisher: Springer Science & Business Media
ISBN: 9789027721037
Category : Mathematics
Languages : en
Pages : 450

Book Description
Approach your problems from the right end It isn't that they can't see the solution. It is and begin with the answers. Then one day, that they can't see the problem. perhaps you will find the final question. G. K. Chesterton. The Scandal of Father 'The Hermit Clad in Crane Feathers' in R. Brown 'The point of a Pin'. van Gulik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And in addition to this there are such new emerging subdisciplines as "experimental mathematics", "CFD", "completely integrable systems", "chaos, synergetics and large-scale order", which are almost impossible to fit into the existing classification schemes. They draw upon widely different sections of mathematics.

An Introduction to Inverse Scattering and Inverse Spectral Problems

An Introduction to Inverse Scattering and Inverse Spectral Problems PDF Author: Khosrow Chadan
Publisher: SIAM
ISBN: 0898713870
Category : Mathematics
Languages : en
Pages : 206

Book Description
Here is a clearly written introduction to three central areas of inverse problems: inverse problems in electromagnetic scattering theory, inverse spectral theory, and inverse problems in quantum scattering theory. Inverse problems, one of the most attractive parts of applied mathematics, attempt to obtain information about structures by nondestructive measurements. Based on a series of lectures presented by three of the authors, all experts in the field, the book provides a quick and easy way for readers to become familiar with the area through a survey of recent developments in inverse spectral and inverse scattering problems.

Mathematical Theory of Scattering Resonances

Mathematical Theory of Scattering Resonances PDF Author: Semyon Dyatlov
Publisher: American Mathematical Soc.
ISBN: 147044366X
Category : Mathematics
Languages : en
Pages : 649

Book Description
Scattering resonances generalize bound states/eigenvalues for systems in which energy can scatter to infinity. A typical resonance has a rate of oscillation (just as a bound state does) and a rate of decay. Although the notion is intrinsically dynamical, an elegant mathematical formulation comes from considering meromorphic continuations of Green's functions. The poles of these meromorphic continuations capture physical information by identifying the rate of oscillation with the real part of a pole and the rate of decay with its imaginary part. An example from mathematics is given by the zeros of the Riemann zeta function: they are, essentially, the resonances of the Laplacian on the modular surface. The Riemann hypothesis then states that the decay rates for the modular surface are all either or . An example from physics is given by quasi-normal modes of black holes which appear in long-time asymptotics of gravitational waves. This book concentrates mostly on the simplest case of scattering by compactly supported potentials but provides pointers to modern literature where more general cases are studied. It also presents a recent approach to the study of resonances on asymptotically hyperbolic manifolds. The last two chapters are devoted to semiclassical methods in the study of resonances.

Canonical Problems in Scattering and Potential Theory Part II

Canonical Problems in Scattering and Potential Theory Part II PDF Author: S.S. Vinogradov
Publisher: CRC Press
ISBN: 1000738132
Category : Mathematics
Languages : en
Pages : 393

Book Description
Although the analysis of scattering for closed bodies of simple geometric shape is well developed, structures with edges, cavities, or inclusions have seemed, until now, intractable to analytical methods. This two-volume set describes a breakthrough in analytical techniques for accurately determining diffraction from classes of canonical scatterers

Direct and Inverse Scattering for the Matrix Schrödinger Equation

Direct and Inverse Scattering for the Matrix Schrödinger Equation PDF Author: Tuncay Aktosun
Publisher: Springer Nature
ISBN: 3030384314
Category : Mathematics
Languages : en
Pages : 631

Book Description
Authored by two experts in the field who have been long-time collaborators, this monograph treats the scattering and inverse scattering problems for the matrix Schrödinger equation on the half line with the general selfadjoint boundary condition. The existence, uniqueness, construction, and characterization aspects are treated with mathematical rigor, and physical insight is provided to make the material accessible to mathematicians, physicists, engineers, and applied scientists with an interest in scattering and inverse scattering. The material presented is expected to be useful to beginners as well as experts in the field. The subject matter covered is expected to be interesting to a wide range of researchers including those working in quantum graphs and scattering on graphs. The theory presented is illustrated with various explicit examples to improve the understanding of scattering and inverse scattering problems. The monograph introduces a specific class of input data sets consisting of a potential and a boundary condition and a specific class of scattering data sets consisting of a scattering matrix and bound-state information. The important problem of the characterization is solved by establishing a one-to-one correspondence between the two aforementioned classes. The characterization result is formulated in various equivalent forms, providing insight and allowing a comparison of different techniques used to solve the inverse scattering problem. The past literature treated the type of boundary condition as a part of the scattering data used as input to recover the potential. This monograph provides a proper formulation of the inverse scattering problem where the type of boundary condition is no longer a part of the scattering data set, but rather both the potential and the type of boundary condition are recovered from the scattering data set.

Acoustic and Electromagnetic Scattering Analysis Using Discrete Sources

Acoustic and Electromagnetic Scattering Analysis Using Discrete Sources PDF Author: Adrian Doicu
Publisher: Academic Press
ISBN:
Category : Mathematics
Languages : en
Pages : 344

Book Description
The discrete sources method is an efficient and powerful tool for solving a large class of boundary-value problems in scattering theory. A variety of numerical methods for discrete sources now exist. In this book, the authors unify these formulations in the context of the so-called discrete sources method. Comprehensive presentation of the discrete sources method Original theory - an extension of the conventional null-field method using discrete sources Practical examples that demonstrate the efficiency and flexibility of elaborated methods (scattering by particles with high aspect ratio, rough particles, nonaxisymmetric particles, multiple scattering) List of discrete sources programmes available via the Internet