Author: Michael Bowker
Publisher: John Wiley & Sons
ISBN: 9783527628834
Category : Science
Languages : en
Pages : 258
Book Description
Here, top international authors in the field of STM and surface science present first-class contributions on this hot topic, bringing the reader up to date with the latest developments in this rapidly advancing field. The focus is on the nanoscale, particularly in relation to catalysis, involving developments in our understanding of the nature of the surfaces of oxides and nanoparticulate materials, as well as adsorption, and includes in-situ studies of catalysis on such model materials. Of high interest to practitioners of surface science, nanoscience, STM and catalysis.
Scanning Tunneling Microscopy in Surface Science, Nanoscience, and Catalysis
Author: Michael Bowker
Publisher: John Wiley & Sons
ISBN: 9783527628834
Category : Science
Languages : en
Pages : 258
Book Description
Here, top international authors in the field of STM and surface science present first-class contributions on this hot topic, bringing the reader up to date with the latest developments in this rapidly advancing field. The focus is on the nanoscale, particularly in relation to catalysis, involving developments in our understanding of the nature of the surfaces of oxides and nanoparticulate materials, as well as adsorption, and includes in-situ studies of catalysis on such model materials. Of high interest to practitioners of surface science, nanoscience, STM and catalysis.
Publisher: John Wiley & Sons
ISBN: 9783527628834
Category : Science
Languages : en
Pages : 258
Book Description
Here, top international authors in the field of STM and surface science present first-class contributions on this hot topic, bringing the reader up to date with the latest developments in this rapidly advancing field. The focus is on the nanoscale, particularly in relation to catalysis, involving developments in our understanding of the nature of the surfaces of oxides and nanoparticulate materials, as well as adsorption, and includes in-situ studies of catalysis on such model materials. Of high interest to practitioners of surface science, nanoscience, STM and catalysis.
Scanning Tunneling Microscopy in Surface Science
Author: Michael Bowker
Publisher: Wiley-VCH
ISBN: 9783527319824
Category : Science
Languages : en
Pages : 258
Book Description
Here, top international authors in the field of STM and surface science present first-class contributions on this hot topic, bringing the reader up to date with the latest developments in this rapidly advancing field. The focus is on the nanoscale, particularly in relation to catalysis, involving developments in our understanding of the nature of the surfaces of oxides and nanoparticulate materials, as well as adsorption, and includes in-situ studies of catalysis on such model materials. Of high interest to practitioners of surface science, nanoscience, STM and catalysis.
Publisher: Wiley-VCH
ISBN: 9783527319824
Category : Science
Languages : en
Pages : 258
Book Description
Here, top international authors in the field of STM and surface science present first-class contributions on this hot topic, bringing the reader up to date with the latest developments in this rapidly advancing field. The focus is on the nanoscale, particularly in relation to catalysis, involving developments in our understanding of the nature of the surfaces of oxides and nanoparticulate materials, as well as adsorption, and includes in-situ studies of catalysis on such model materials. Of high interest to practitioners of surface science, nanoscience, STM and catalysis.
Encyclopedia of Interfacial Chemistry
Author:
Publisher: Elsevier
ISBN: 0128098945
Category : Science
Languages : en
Pages : 5276
Book Description
Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry, Seven Volume Set summarizes current, fundamental knowledge of interfacial chemistry, bringing readers the latest developments in the field. As the chemical and physical properties and processes at solid and liquid interfaces are the scientific basis of so many technologies which enhance our lives and create new opportunities, its important to highlight how these technologies enable the design and optimization of functional materials for heterogeneous and electro-catalysts in food production, pollution control, energy conversion and storage, medical applications requiring biocompatibility, drug delivery, and more. This book provides an interdisciplinary view that lies at the intersection of these fields. Presents fundamental knowledge of interfacial chemistry, surface science and electrochemistry and provides cutting-edge research from academics and practitioners across various fields and global regions
Publisher: Elsevier
ISBN: 0128098945
Category : Science
Languages : en
Pages : 5276
Book Description
Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry, Seven Volume Set summarizes current, fundamental knowledge of interfacial chemistry, bringing readers the latest developments in the field. As the chemical and physical properties and processes at solid and liquid interfaces are the scientific basis of so many technologies which enhance our lives and create new opportunities, its important to highlight how these technologies enable the design and optimization of functional materials for heterogeneous and electro-catalysts in food production, pollution control, energy conversion and storage, medical applications requiring biocompatibility, drug delivery, and more. This book provides an interdisciplinary view that lies at the intersection of these fields. Presents fundamental knowledge of interfacial chemistry, surface science and electrochemistry and provides cutting-edge research from academics and practitioners across various fields and global regions
In-situ Characterization of Heterogeneous Catalysts
Author: José A. Rodriguez
Publisher: John Wiley & Sons
ISBN: 1118355911
Category : Science
Languages : en
Pages : 488
Book Description
Helps researchers develop new catalysts for sustainable fueland chemical production Reviewing the latest developments in the field, this bookexplores the in-situ characterization of heterogeneous catalysts,enabling readers to take full advantage of the sophisticatedtechniques used to study heterogeneous catalysts and reactionmechanisms. In using these techniques, readers can learn to improvethe selectivity and the performance of catalysts and how to preparecatalysts as efficiently as possible, with minimum waste. In-situ Characterization of Heterogeneous Catalysts featurescontributions from leading experts in the field of catalysis. Itbegins with an introduction to the fundamentals and thencovers: Characterization of electronic and structural properties ofcatalysts using X-ray absorption fine structure spectroscopy Techniques for structural characterization based on X-raydiffraction, neutron scattering, and pair distribution functionanalysis Microscopy and morphological studies Techniques for studying the interaction of adsorbates withcatalyst surfaces, including infrared spectroscopy, Ramanspectroscopy, EPR, and moderate pressure XPS Integration of techniques that provide information on thestructural properties of catalysts with techniques that facilitatethe study of surface reactions Throughout the book, detailed examples illustrate how techniquesfor studying catalysts and reaction mechanisms can be applied tosolve a broad range of problems in heterogeneous catalysis.Detailed figures help readers better understand how and why thetechniques discussed in the book work. At the end of each chapter,an extensive set of references leads to the primary literature inthe field. By explaining step by step modern techniques for the in-situcharacterization of heterogeneous catalysts, this book enableschemical scientists and engineers to better understand catalystbehavior and design new catalysts for green, sustainable fuel andchemical production.
Publisher: John Wiley & Sons
ISBN: 1118355911
Category : Science
Languages : en
Pages : 488
Book Description
Helps researchers develop new catalysts for sustainable fueland chemical production Reviewing the latest developments in the field, this bookexplores the in-situ characterization of heterogeneous catalysts,enabling readers to take full advantage of the sophisticatedtechniques used to study heterogeneous catalysts and reactionmechanisms. In using these techniques, readers can learn to improvethe selectivity and the performance of catalysts and how to preparecatalysts as efficiently as possible, with minimum waste. In-situ Characterization of Heterogeneous Catalysts featurescontributions from leading experts in the field of catalysis. Itbegins with an introduction to the fundamentals and thencovers: Characterization of electronic and structural properties ofcatalysts using X-ray absorption fine structure spectroscopy Techniques for structural characterization based on X-raydiffraction, neutron scattering, and pair distribution functionanalysis Microscopy and morphological studies Techniques for studying the interaction of adsorbates withcatalyst surfaces, including infrared spectroscopy, Ramanspectroscopy, EPR, and moderate pressure XPS Integration of techniques that provide information on thestructural properties of catalysts with techniques that facilitatethe study of surface reactions Throughout the book, detailed examples illustrate how techniquesfor studying catalysts and reaction mechanisms can be applied tosolve a broad range of problems in heterogeneous catalysis.Detailed figures help readers better understand how and why thetechniques discussed in the book work. At the end of each chapter,an extensive set of references leads to the primary literature inthe field. By explaining step by step modern techniques for the in-situcharacterization of heterogeneous catalysts, this book enableschemical scientists and engineers to better understand catalystbehavior and design new catalysts for green, sustainable fuel andchemical production.
Nanosensors
Author: Vinod Kumar Khanna
Publisher: CRC Press
ISBN: 100033127X
Category : Technology & Engineering
Languages : en
Pages : 579
Book Description
Nanosensors are innovative devices that exploit the unique properties exhibited by matter at the nanoscale. A growing and exciting field, nanosensors have recently spurred considerable research endeavors across the globe, driving a need for the development of new device concepts and engineering nanostructured materials with controlled properties. Nanosensors: Physical, Chemical, and Biological, Second Edition offers a panoramic view of the field and related nanotechnologies with extraordinary clarity and depth. Presenting an interdisciplinary approach, blending physics, chemistry and biology, this new edition is broad in scope and organised into six parts; beginning with the fundamentals before moving onto nanomaterials and nanofabrication technologies in the second part. The third and fourth parts provide a critical appraisal of physical nanosensors, and explore the chemical and biological categories of nanosensors. The fifth part sheds light on the emerging applications of nanosensors in the sectors of society, industry, and defense and details the cutting-edge applications of state-of-the-art nanosensors in environmental science, food technology, medical diagnostics, and biotechnology. The final part addresses self-powering and networking issues of nanosensors, and provides glimpses of future trends. This is an ideal reference for researchers and industry professionals engaged in the frontier areas of material science and semiconductor fabrication as well as graduate students in physics and engineering pursuing electrical engineering and electronics courses with a focus on nanoscience and nanotechnology. Key features: Provides an updated, all-encompassing exploration of contemporary nanosensors and highlights the exclusive nanoscale properties on which nanosensors are designed. Presents an accessible approach with a question-and-answer format to allow an easy grasp of the intricacies involved in the complex working mechanisms of devices. Contains clear, illustrative diagrams enabling the visualization of nanosensor operations, along with worked examples, end of chapter questions, and exhaustive up-to-date bibliographies appended to each chapter.
Publisher: CRC Press
ISBN: 100033127X
Category : Technology & Engineering
Languages : en
Pages : 579
Book Description
Nanosensors are innovative devices that exploit the unique properties exhibited by matter at the nanoscale. A growing and exciting field, nanosensors have recently spurred considerable research endeavors across the globe, driving a need for the development of new device concepts and engineering nanostructured materials with controlled properties. Nanosensors: Physical, Chemical, and Biological, Second Edition offers a panoramic view of the field and related nanotechnologies with extraordinary clarity and depth. Presenting an interdisciplinary approach, blending physics, chemistry and biology, this new edition is broad in scope and organised into six parts; beginning with the fundamentals before moving onto nanomaterials and nanofabrication technologies in the second part. The third and fourth parts provide a critical appraisal of physical nanosensors, and explore the chemical and biological categories of nanosensors. The fifth part sheds light on the emerging applications of nanosensors in the sectors of society, industry, and defense and details the cutting-edge applications of state-of-the-art nanosensors in environmental science, food technology, medical diagnostics, and biotechnology. The final part addresses self-powering and networking issues of nanosensors, and provides glimpses of future trends. This is an ideal reference for researchers and industry professionals engaged in the frontier areas of material science and semiconductor fabrication as well as graduate students in physics and engineering pursuing electrical engineering and electronics courses with a focus on nanoscience and nanotechnology. Key features: Provides an updated, all-encompassing exploration of contemporary nanosensors and highlights the exclusive nanoscale properties on which nanosensors are designed. Presents an accessible approach with a question-and-answer format to allow an easy grasp of the intricacies involved in the complex working mechanisms of devices. Contains clear, illustrative diagrams enabling the visualization of nanosensor operations, along with worked examples, end of chapter questions, and exhaustive up-to-date bibliographies appended to each chapter.
Springer Handbook of Microscopy
Author: Peter W. Hawkes
Publisher: Springer Nature
ISBN: 3030000699
Category : Technology & Engineering
Languages : en
Pages : 1561
Book Description
This book features reviews by leading experts on the methods and applications of modern forms of microscopy. The recent awards of Nobel Prizes awarded for super-resolution optical microscopy and cryo-electron microscopy have demonstrated the rich scientific opportunities for research in novel microscopies. Earlier Nobel Prizes for electron microscopy (the instrument itself and applications to biology), scanning probe microscopy and holography are a reminder of the central role of microscopy in modern science, from the study of nanostructures in materials science, physics and chemistry to structural biology. Separate chapters are devoted to confocal, fluorescent and related novel optical microscopies, coherent diffractive imaging, scanning probe microscopy, transmission electron microscopy in all its modes from aberration corrected and analytical to in-situ and time-resolved, low energy electron microscopy, photoelectron microscopy, cryo-electron microscopy in biology, and also ion microscopy. In addition to serving as an essential reference for researchers and teachers in the fields such as materials science, condensed matter physics, solid-state chemistry, structural biology and the molecular sciences generally, the Springer Handbook of Microscopy is a unified, coherent and pedagogically attractive text for advanced students who need an authoritative yet accessible guide to the science and practice of microscopy.
Publisher: Springer Nature
ISBN: 3030000699
Category : Technology & Engineering
Languages : en
Pages : 1561
Book Description
This book features reviews by leading experts on the methods and applications of modern forms of microscopy. The recent awards of Nobel Prizes awarded for super-resolution optical microscopy and cryo-electron microscopy have demonstrated the rich scientific opportunities for research in novel microscopies. Earlier Nobel Prizes for electron microscopy (the instrument itself and applications to biology), scanning probe microscopy and holography are a reminder of the central role of microscopy in modern science, from the study of nanostructures in materials science, physics and chemistry to structural biology. Separate chapters are devoted to confocal, fluorescent and related novel optical microscopies, coherent diffractive imaging, scanning probe microscopy, transmission electron microscopy in all its modes from aberration corrected and analytical to in-situ and time-resolved, low energy electron microscopy, photoelectron microscopy, cryo-electron microscopy in biology, and also ion microscopy. In addition to serving as an essential reference for researchers and teachers in the fields such as materials science, condensed matter physics, solid-state chemistry, structural biology and the molecular sciences generally, the Springer Handbook of Microscopy is a unified, coherent and pedagogically attractive text for advanced students who need an authoritative yet accessible guide to the science and practice of microscopy.
Catalysis
Author: James J Spivey
Publisher: Royal Society of Chemistry
ISBN: 1839163127
Category : Science
Languages : en
Pages : 494
Book Description
This volume looks at modern approaches to catalysis and reviews the extensive literature. Chapters highlight application of 2D materials in biomass conversion catalysis, plasmonic photocatalysis, catalytic demonstration of mesoporosity in the hierarchical zeolite and the effect of surface phase oxides on supported metals and catalysis. Looking to the future a chapter on ab initio machine learning for accelerating catalytic materials discovery is included. Appealing broadly to researchers in academia and industry, these illustrative chapters bridge the gap from academic studies in the laboratory to practical applications in industry not only for catalysis field but also for environmental protection. Other chapters with an industrial perspective include heterogeneous and homogeneous catalytic routes for vinyl acetate synthesis, catalysis for production of jet fuel from renewable sources by HDO/HDC and microwave-assisted catalysis for fuel conversion. Chemical reactions in ball mills is also explored. The book will be of great benefit to any researcher wanting a succinct reference on developments in this area now and looking to the future.
Publisher: Royal Society of Chemistry
ISBN: 1839163127
Category : Science
Languages : en
Pages : 494
Book Description
This volume looks at modern approaches to catalysis and reviews the extensive literature. Chapters highlight application of 2D materials in biomass conversion catalysis, plasmonic photocatalysis, catalytic demonstration of mesoporosity in the hierarchical zeolite and the effect of surface phase oxides on supported metals and catalysis. Looking to the future a chapter on ab initio machine learning for accelerating catalytic materials discovery is included. Appealing broadly to researchers in academia and industry, these illustrative chapters bridge the gap from academic studies in the laboratory to practical applications in industry not only for catalysis field but also for environmental protection. Other chapters with an industrial perspective include heterogeneous and homogeneous catalytic routes for vinyl acetate synthesis, catalysis for production of jet fuel from renewable sources by HDO/HDC and microwave-assisted catalysis for fuel conversion. Chemical reactions in ball mills is also explored. The book will be of great benefit to any researcher wanting a succinct reference on developments in this area now and looking to the future.
Oxide Ultrathin Films
Author: Gianfranco Pacchioni
Publisher: John Wiley & Sons
ISBN: 3527640185
Category : Technology & Engineering
Languages : en
Pages : 526
Book Description
A wealth of information in one accessible book. Written by international experts from multidisciplinary fields, this in-depth exploration of oxide ultrathin films covers all aspects of these systems, starting with preparation and characterization, and going on to geometrical and electronic structure, as well as applications in current and future systems and devices. From the Contents: Synthesis and Preparation of Oxide Ultrathin Films Characterization Tools of Oxide Ultrathin Films Ordered Oxide Nanostructures on Metal Surfaces Unusual Properties of Oxides and Other Insulators in the Ultrathin Limit Silica and High-K Dielectrics Thin Films in Microelectronics Oxide Passive Films and Corrosion Protection Oxide Films as Catalytic Materials and as Models of Real Catalysts Oxide Films in Spintronics Oxide Ultrathin Films in Solid Oxide Fuel Cells Transparent Conducting and Chromogenic Oxide Films as Solar Energy Materials Oxide Ultrathin Films in Sensor Applications Ferroelectricity in Ultrathin Film Capacitors Titania Thin Films in Biocompatible Materials and Medical Implants Oxide Nanowires for New Chemical Sensor Devices
Publisher: John Wiley & Sons
ISBN: 3527640185
Category : Technology & Engineering
Languages : en
Pages : 526
Book Description
A wealth of information in one accessible book. Written by international experts from multidisciplinary fields, this in-depth exploration of oxide ultrathin films covers all aspects of these systems, starting with preparation and characterization, and going on to geometrical and electronic structure, as well as applications in current and future systems and devices. From the Contents: Synthesis and Preparation of Oxide Ultrathin Films Characterization Tools of Oxide Ultrathin Films Ordered Oxide Nanostructures on Metal Surfaces Unusual Properties of Oxides and Other Insulators in the Ultrathin Limit Silica and High-K Dielectrics Thin Films in Microelectronics Oxide Passive Films and Corrosion Protection Oxide Films as Catalytic Materials and as Models of Real Catalysts Oxide Films in Spintronics Oxide Ultrathin Films in Solid Oxide Fuel Cells Transparent Conducting and Chromogenic Oxide Films as Solar Energy Materials Oxide Ultrathin Films in Sensor Applications Ferroelectricity in Ultrathin Film Capacitors Titania Thin Films in Biocompatible Materials and Medical Implants Oxide Nanowires for New Chemical Sensor Devices
Surface Science
Author: Kurt W. Kolasinski
Publisher: John Wiley & Sons
ISBN: 111954663X
Category : Technology & Engineering
Languages : en
Pages : 525
Book Description
An updated fourth edition of the text that provides an understanding of chemical transformations and the formation of structures at surfaces The revised and enhanced fourth edition of Surface Science covers all the essential techniques and phenomena that are relevant to the field. The text elucidates the structural, dynamical, thermodynamic and kinetic principles concentrating on gas/solid and liquid/solid interfaces. These principles allow for an understanding of how and why chemical transformations occur at surfaces. The author (a noted expert on in the field) combines the required chemistry, physics and mathematics to create a text that is accessible and comprehensive. The fourth edition incorporates new end-of-chapter exercises, the solutions to which are available on-line to demonstrate how problem solving that is relevant to surface science should be performed. Each chapter begins with simple principles and builds to more advanced ones. The advanced topics provide material beyond the introductory level and highlight some frontier areas of study. This updated new edition: Contains an expanded treatment of STM and AFM as well as super-resolution microscopy Reviews advances in the theoretical basis of catalysis and the use of activity descriptors for rational catalyst design Extends the discussion of two-dimensional solids to reflect remarkable advances in their growth and characterization Delves deeper into the surface science of electrochemistry and charge transfer reactions Updates the “Frontiers and Challenges” sections at the end of each chapter as well as the list of references Written for students, researchers and professionals, the fourth edition of Surface Science offers a revitalized text that contains the tools and a set of principles for understanding the field. Instructor support material, solutions and PPTs of figures, are available at http://booksupport.wiley.com
Publisher: John Wiley & Sons
ISBN: 111954663X
Category : Technology & Engineering
Languages : en
Pages : 525
Book Description
An updated fourth edition of the text that provides an understanding of chemical transformations and the formation of structures at surfaces The revised and enhanced fourth edition of Surface Science covers all the essential techniques and phenomena that are relevant to the field. The text elucidates the structural, dynamical, thermodynamic and kinetic principles concentrating on gas/solid and liquid/solid interfaces. These principles allow for an understanding of how and why chemical transformations occur at surfaces. The author (a noted expert on in the field) combines the required chemistry, physics and mathematics to create a text that is accessible and comprehensive. The fourth edition incorporates new end-of-chapter exercises, the solutions to which are available on-line to demonstrate how problem solving that is relevant to surface science should be performed. Each chapter begins with simple principles and builds to more advanced ones. The advanced topics provide material beyond the introductory level and highlight some frontier areas of study. This updated new edition: Contains an expanded treatment of STM and AFM as well as super-resolution microscopy Reviews advances in the theoretical basis of catalysis and the use of activity descriptors for rational catalyst design Extends the discussion of two-dimensional solids to reflect remarkable advances in their growth and characterization Delves deeper into the surface science of electrochemistry and charge transfer reactions Updates the “Frontiers and Challenges” sections at the end of each chapter as well as the list of references Written for students, researchers and professionals, the fourth edition of Surface Science offers a revitalized text that contains the tools and a set of principles for understanding the field. Instructor support material, solutions and PPTs of figures, are available at http://booksupport.wiley.com
Comprehensive Nanoscience and Technology
Author:
Publisher: Academic Press
ISBN: 0123743966
Category : Science
Languages : en
Pages : 2785
Book Description
From the Introduction: Nanotechnology and its underpinning sciences are progressing with unprecedented rapidity. With technical advances in a variety of nanoscale fabrication and manipulation technologies, the whole topical area is maturing into a vibrant field that is generating new scientific research and a burgeoning range of commercial applications, with an annual market already at the trillion dollar threshold. The means of fabricating and controlling matter on the nanoscale afford striking and unprecedented opportunities to exploit a variety of exotic phenomena such as quantum, nanophotonic and nanoelectromechanical effects. Moreover, researchers are elucidating new perspectives on the electronic and optical properties of matter because of the way that nanoscale materials bridge the disparate theories describing molecules and bulk matter. Surface phenomena also gain a greatly increased significance; even the well-known link between chemical reactivity and surface-to-volume ratio becomes a major determinant of physical properties, when it operates over nanoscale dimensions. Against this background, this comprehensive work is designed to address the need for a dynamic, authoritative and readily accessible source of information, capturing the full breadth of the subject. Its six volumes, covering a broad spectrum of disciplines including material sciences, chemistry, physics and life sciences, have been written and edited by an outstanding team of international experts. Addressing an extensive, cross-disciplinary audience, each chapter aims to cover key developments in a scholarly, readable and critical style, providing an indispensible first point of entry to the literature for scientists and technologists from interdisciplinary fields. The work focuses on the major classes of nanomaterials in terms of their synthesis, structure and applications, reviewing nanomaterials and their respective technologies in well-structured and comprehensive articles with extensive cross-references. It has been a constant surprise and delight to have found, amongst the rapidly escalating number who work in nanoscience and technology, so many highly esteemed authors willing to contribute. Sharing our anticipation of a major addition to the literature, they have also captured the excitement of the field itself in each carefully crafted chapter. Along with our painstaking and meticulous volume editors, full credit for the success of this enterprise must go to these individuals, together with our thanks for (largely) adhering to the given deadlines. Lastly, we record our sincere thanks and appreciation for the skills and professionalism of the numerous Elsevier staff who have been involved in this project, notably Fiona Geraghty, Megan Palmer and Greg Harris, and especially Donna De Weerd-Wilson who has steered it through from its inception. We have greatly enjoyed working with them all, as we have with each other.
Publisher: Academic Press
ISBN: 0123743966
Category : Science
Languages : en
Pages : 2785
Book Description
From the Introduction: Nanotechnology and its underpinning sciences are progressing with unprecedented rapidity. With technical advances in a variety of nanoscale fabrication and manipulation technologies, the whole topical area is maturing into a vibrant field that is generating new scientific research and a burgeoning range of commercial applications, with an annual market already at the trillion dollar threshold. The means of fabricating and controlling matter on the nanoscale afford striking and unprecedented opportunities to exploit a variety of exotic phenomena such as quantum, nanophotonic and nanoelectromechanical effects. Moreover, researchers are elucidating new perspectives on the electronic and optical properties of matter because of the way that nanoscale materials bridge the disparate theories describing molecules and bulk matter. Surface phenomena also gain a greatly increased significance; even the well-known link between chemical reactivity and surface-to-volume ratio becomes a major determinant of physical properties, when it operates over nanoscale dimensions. Against this background, this comprehensive work is designed to address the need for a dynamic, authoritative and readily accessible source of information, capturing the full breadth of the subject. Its six volumes, covering a broad spectrum of disciplines including material sciences, chemistry, physics and life sciences, have been written and edited by an outstanding team of international experts. Addressing an extensive, cross-disciplinary audience, each chapter aims to cover key developments in a scholarly, readable and critical style, providing an indispensible first point of entry to the literature for scientists and technologists from interdisciplinary fields. The work focuses on the major classes of nanomaterials in terms of their synthesis, structure and applications, reviewing nanomaterials and their respective technologies in well-structured and comprehensive articles with extensive cross-references. It has been a constant surprise and delight to have found, amongst the rapidly escalating number who work in nanoscience and technology, so many highly esteemed authors willing to contribute. Sharing our anticipation of a major addition to the literature, they have also captured the excitement of the field itself in each carefully crafted chapter. Along with our painstaking and meticulous volume editors, full credit for the success of this enterprise must go to these individuals, together with our thanks for (largely) adhering to the given deadlines. Lastly, we record our sincere thanks and appreciation for the skills and professionalism of the numerous Elsevier staff who have been involved in this project, notably Fiona Geraghty, Megan Palmer and Greg Harris, and especially Donna De Weerd-Wilson who has steered it through from its inception. We have greatly enjoyed working with them all, as we have with each other.