Exponential Fitting PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Exponential Fitting PDF full book. Access full book title Exponential Fitting by Liviu Gr. Ixaru. Download full books in PDF and EPUB format.

Exponential Fitting

Exponential Fitting PDF Author: Liviu Gr. Ixaru
Publisher: Springer Science & Business Media
ISBN: 9781402020995
Category : Mathematics
Languages : en
Pages : 328

Book Description
Exponential Fitting is a procedure for an efficient numerical approach of functions consisting of weighted sums of exponential, trigonometric or hyperbolic functions with slowly varying weight functions. This book is the first one devoted to this subject. Operations on the functions described above like numerical differentiation, quadrature, interpolation or solving ordinary differential equations whose solution is of this type, are of real interest nowadays in many phenomena as oscillations, vibrations, rotations, or wave propagation. The authors studied the field for many years and contributed to it. Since the total number of papers accumulated so far in this field exceeds 200 and the fact that these papers are spread over journals with various profiles (such as applied mathematics, computer science, computational physics and chemistry) it was time to compact and to systematically present this vast material. In this book, a series of aspects is covered, ranging from the theory of the procedure up to direct applications and sometimes including ready to use programs. The book can also be used as a textbook for graduate students.

Exponential Fitting

Exponential Fitting PDF Author: Liviu Gr. Ixaru
Publisher: Springer Science & Business Media
ISBN: 9781402020995
Category : Mathematics
Languages : en
Pages : 328

Book Description
Exponential Fitting is a procedure for an efficient numerical approach of functions consisting of weighted sums of exponential, trigonometric or hyperbolic functions with slowly varying weight functions. This book is the first one devoted to this subject. Operations on the functions described above like numerical differentiation, quadrature, interpolation or solving ordinary differential equations whose solution is of this type, are of real interest nowadays in many phenomena as oscillations, vibrations, rotations, or wave propagation. The authors studied the field for many years and contributed to it. Since the total number of papers accumulated so far in this field exceeds 200 and the fact that these papers are spread over journals with various profiles (such as applied mathematics, computer science, computational physics and chemistry) it was time to compact and to systematically present this vast material. In this book, a series of aspects is covered, ranging from the theory of the procedure up to direct applications and sometimes including ready to use programs. The book can also be used as a textbook for graduate students.

The Numerical Analysis of Ordinary Differential Equations

The Numerical Analysis of Ordinary Differential Equations PDF Author: J. C. Butcher
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 538

Book Description
Mathematical and computational introduction. The Euler method and its generalizations. Analysis of Runge-Kutta methods. General linear methods.

Structure-Preserving Algorithms for Oscillatory Differential Equations

Structure-Preserving Algorithms for Oscillatory Differential Equations PDF Author: Xinyuan Wu
Publisher: Springer Science & Business Media
ISBN: 364235338X
Category : Technology & Engineering
Languages : en
Pages : 244

Book Description
Structure-Preserving Algorithms for Oscillatory Differential Equations describes a large number of highly effective and efficient structure-preserving algorithms for second-order oscillatory differential equations by using theoretical analysis and numerical validation. Structure-preserving algorithms for differential equations, especially for oscillatory differential equations, play an important role in the accurate simulation of oscillatory problems in applied sciences and engineering. The book discusses novel advances in the ARKN, ERKN, two-step ERKN, Falkner-type and energy-preserving methods, etc. for oscillatory differential equations. The work is intended for scientists, engineers, teachers and students who are interested in structure-preserving algorithms for differential equations. Xinyuan Wu is a professor at Nanjing University; Xiong You is an associate professor at Nanjing Agricultural University; Bin Wang is a joint Ph.D student of Nanjing University and University of Cambridge.

Construction Of Integration Formulas For Initial Value Problems

Construction Of Integration Formulas For Initial Value Problems PDF Author: P.J. Van Der Houwen
Publisher: Elsevier
ISBN: 0444601899
Category : Mathematics
Languages : en
Pages : 282

Book Description
Construction of Integration Formulas for Initial Value Problems provides practice-oriented insights into the numerical integration of initial value problems for ordinary differential equations. It describes a number of integration techniques, including single-step methods such as Taylor methods, Runge-Kutta methods, and generalized Runge-Kutta methods. It also looks at multistep methods and stability polynomials. Comprised of four chapters, this volume begins with an overview of definitions of important concepts and theorems that are relevant to the construction of numerical integration methods for initial value problems. It then turns to a discussion of how to convert two-point and initial boundary value problems for partial differential equations into initial value problems for ordinary differential equations. The reader is also introduced to stiff differential equations, partial differential equations, matrix theory and functional analysis, and non-linear equations. The order of approximation of the single-step methods to the differential equation is considered, along with the convergence of a consistent single-step method. There is an explanation on how to construct integration formulas with adaptive stability functions and how to derive the most important stability polynomials. Finally, the book examines the consistency, convergence, and stability conditions for multistep methods. This book is a valuable resource for anyone who is acquainted with introductory calculus, linear algebra, and functional analysis.

Structure-Preserving Algorithms for Oscillatory Differential Equations II

Structure-Preserving Algorithms for Oscillatory Differential Equations II PDF Author: Xinyuan Wu
Publisher: Springer
ISBN: 3662481561
Category : Technology & Engineering
Languages : en
Pages : 305

Book Description
This book describes a variety of highly effective and efficient structure-preserving algorithms for second-order oscillatory differential equations. Such systems arise in many branches of science and engineering, and the examples in the book include systems from quantum physics, celestial mechanics and electronics. To accurately simulate the true behavior of such systems, a numerical algorithm must preserve as much as possible their key structural properties: time-reversibility, oscillation, symplecticity, and energy and momentum conservation. The book describes novel advances in RKN methods, ERKN methods, Filon-type asymptotic methods, AVF methods, and trigonometric Fourier collocation methods. The accuracy and efficiency of each of these algorithms are tested via careful numerical simulations, and their structure-preserving properties are rigorously established by theoretical analysis. The book also gives insights into the practical implementation of the methods. This book is intended for engineers and scientists investigating oscillatory systems, as well as for teachers and students who are interested in structure-preserving algorithms for differential equations.

Geometric Numerical Integration

Geometric Numerical Integration PDF Author: Ernst Hairer
Publisher: Springer Science & Business Media
ISBN: 3662050188
Category : Mathematics
Languages : en
Pages : 526

Book Description
This book deals with numerical methods that preserve properties of Hamiltonian systems, reversible systems, differential equations on manifolds and problems with highly oscillatory solutions. A complete self-contained theory of symplectic and symmetric methods, which include Runge-Kutta, composition, splitting, multistep and various specially designed integrators, is presented and their construction and practical merits are discussed. The long-time behaviour of the numerical solutions is studied using a backward error analysis (modified equations) combined with KAM theory. The book is illustrated by numerous figures, treats applications from physics and astronomy, and contains many numerical experiments and comparisons of different approaches.

Numerical Methods for Initial Value Problems in Ordinary Differential Equations

Numerical Methods for Initial Value Problems in Ordinary Differential Equations PDF Author: Simeon Ola Fatunla
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 320

Book Description


Strong Stability Preserving Runge-Kutta and Multistep Time Discretizations

Strong Stability Preserving Runge-Kutta and Multistep Time Discretizations PDF Author: Sigal Gottlieb
Publisher: World Scientific
ISBN: 9814289264
Category : Mathematics
Languages : en
Pages : 189

Book Description
This book captures the state-of-the-art in the field of Strong Stability Preserving (SSP) time stepping methods, which have significant advantages for the time evolution of partial differential equations describing a wide range of physical phenomena. This comprehensive book describes the development of SSP methods, explains the types of problems which require the use of these methods and demonstrates the efficiency of these methods using a variety of numerical examples. Another valuable feature of this book is that it collects the most useful SSP methods, both explicit and implicit, and presents the other properties of these methods which make them desirable (such as low storage, small error coefficients, large linear stability domains). This book is valuable for both researchers studying the field of time-discretizations for PDEs, and the users of such methods.

Physics of Oscillations and Waves

Physics of Oscillations and Waves PDF Author: Arnt Inge Vistnes
Publisher: Springer
ISBN: 3319723146
Category : Science
Languages : en
Pages : 584

Book Description
In this textbook a combination of standard mathematics and modern numerical methods is used to describe a wide range of natural wave phenomena, such as sound, light and water waves, particularly in specific popular contexts, e.g. colors or the acoustics of musical instruments. It introduces the reader to the basic physical principles that allow the description of the oscillatory motion of matter and classical fields, as well as resulting concepts including interference, diffraction, and coherence. Numerical methods offer new scientific insights and make it possible to handle interesting cases that can’t readily be addressed using analytical mathematics; this holds true not only for problem solving but also for the description of phenomena. Essential physical parameters are brought more into focus, rather than concentrating on the details of which mathematical trick should be used to obtain a certain solution. Readers will learn how time-resolved frequency analysis offers a deeper understanding of the interplay between frequency and time, which is relevant to many phenomena involving oscillations and waves. Attention is also drawn to common misconceptions resulting from uncritical use of the Fourier transform. The book offers an ideal guide for upper-level undergraduate physics students and will also benefit physics instructors. Program codes in Matlab and Python, together with interesting files for use in the problems, are provided as free supplementary material.

Programming for Computations - Python

Programming for Computations - Python PDF Author: Svein Linge
Publisher: Springer Nature
ISBN: 3030168778
Category : Computers
Languages : en
Pages : 350

Book Description
This book is published open access under a CC BY 4.0 license. This book presents computer programming as a key method for solving mathematical problems. This second edition of the well-received book has been extensively revised: All code is now written in Python version 3.6 (no longer version 2.7). In addition, the two first chapters of the previous edition have been extended and split up into five new chapters, thus expanding the introduction to programming from 50 to 150 pages. Throughout the book, the explanations provided are now more detailed, previous examples have been modified, and new sections, examples and exercises have been added. Also, a number of small errors have been corrected. The book was inspired by the Springer book TCSE 6: A Primer on Scientific Programming with Python (by Langtangen), but the style employed is more accessible and concise, in keeping with the needs of engineering students. The book outlines the shortest possible path from no previous experience with programming to a set of skills that allows students to write simple programs for solving common mathematical problems with numerical methods in the context of engineering and science courses. The emphasis is on generic algorithms, clean program design, the use of functions, and automatic tests for verification.