Role of Microbial Communities in Mediating Ecosystem Response to Disturbance PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Role of Microbial Communities in Mediating Ecosystem Response to Disturbance PDF full book. Access full book title Role of Microbial Communities in Mediating Ecosystem Response to Disturbance by Erica A. H. Smithwick. Download full books in PDF and EPUB format.

Role of Microbial Communities in Mediating Ecosystem Response to Disturbance

Role of Microbial Communities in Mediating Ecosystem Response to Disturbance PDF Author: Erica A. H. Smithwick
Publisher:
ISBN:
Category :
Languages : en
Pages : 383

Book Description


Role of Microbial Communities in Mediating Ecosystem Response to Disturbance

Role of Microbial Communities in Mediating Ecosystem Response to Disturbance PDF Author: Erica A. H. Smithwick
Publisher:
ISBN:
Category :
Languages : en
Pages : 383

Book Description


Part I

Part I PDF Author: Erica A. H. Smithwick
Publisher:
ISBN:
Category :
Languages : en
Pages : 383

Book Description


Role of Microbial Communities in Mediating an Ecosystem's Response to Global Change

Role of Microbial Communities in Mediating an Ecosystem's Response to Global Change PDF Author: Kristin L. Matulich
Publisher:
ISBN: 9781321964585
Category :
Languages : en
Pages : 108

Book Description
A central goal of global change biology is to predict the impact of environmental change on ecosystem processes. Currently, most global change models treat the local microbial community as a single, homogenously functioning entity, thereby assuming that the specific microbial composition is functionally irrelevant. However, microorganisms perform key transformations in ecosystems, and recent research demonstrates that microbial communities vary greatly across space and in response to environmental change. Therefore, parameters describing microbial communities may be key for improving predictions of how future global changes will impact ecosystem processes. For this reason, my dissertation research examined the effect of environmental changes on resident communities and determined how potential shifts in microbial community composition will impact litter decomposition rates. To accomplish this, I gathered litter samples from a chaparral ecosystem undergoing global change manipulations (elevated nitrogen availability or reduced precipitation), and characterized the microbial community using 454 high-throughput sequencing (Chapter 1). While microbial communities are much more variable through time, this research showed that microbial composition will likely shift in response to environmental change. I also examined the role of microbial community composition for a key ecosystem process, litter decomposition, and how that role changes under environmental perturbations. By isolating microbial taxa from the same ecosystem discussed above, I constructed artificial microbial communities with varying composition. I then conducted a laboratory experiment in which I subjected the communities to different global change manipulations and monitored decomposition rates and community composition (Chapter 2). Microbial composition had a main effect on leaf litter decomposition and also interacted with the environmental treatment, suggesting that future shifts in microbial communities will influence the magnitude in which environmental change affects ecosystem processes. Lastly, I investigated the functional and response traits of individual microbial taxa to better predict how microbial communities might respond to global change perturbations, and found that many functional traits displayed a phylogenetic pattern, but a taxa's response to increased temperature did not (Chapter 3). Ultimately, this set of studies further justifies the need to incorporate microbial communities into models and begins to identify which parameters might be most relevant.

Microbial Responses to Environmental Changes

Microbial Responses to Environmental Changes PDF Author: Jürg B. Logue
Publisher: Frontiers Media SA
ISBN: 2889197239
Category : Microbiology
Languages : en
Pages : 263

Book Description
Advances in next generation sequencing technologies, omics, and bioinformatics are revealing a tremendous and unsuspected diversity of microbes, both at a compositional and functional level. Moreover, the expansion of ecological concepts into microbial ecology has greatly advanced our comprehension of the role microbes play in the functioning of ecosystems across a wide range of biomes. Super-imposed on this new information about microbes, their functions and how they are organized, environmental gradients are changing rapidly, largely driven by direct and indirect human activities. In the context of global change, understanding the mechanisms that shape microbial communities is pivotal to predict microbial responses to novel selective forces and their implications at the local as well as global scale. One of the main features of microbial communities is their ability to react to changes in the environment. Thus, many studies have reported changes in the performance and composition of communities along environmental gradients. However, the mechanisms underlying these responses remain unclear. It is assumed that the response of microbes to changes in the environment is mediated by a complex combination of shifts in the physiological properties, single-cell activities, or composition of communities: it may occur by means of physiological adjustments of the taxa present in a community or selecting towards more tolerant/better adapted phylotypes. Knowing whether certain factors trigger one, many, or all mechanisms would greatly increase confidence in predictions of future microbial composition and processes. This Research Topic brings together studies that applied the latest molecular techniques for studying microbial composition and functioning and integrated ecological, biogeochemical and/or modeling approaches to provide a comprehensive and mechanistic perspective of the responses of micro-organisms to environmental changes. This Research Topic presents new findings on environmental parameters influencing microbial communities, the type and magnitude of response and differences in the response among microbial groups, and which collectively deepen our current understanding and knowledge of the underlying mechanisms of microbial structural and functional responses to environmental changes and gradients in both aquatic and terrestrial ecosystems. The body of work has, furthermore, identified many challenges and questions that yet remain to be addressed and new perspectives to follow up on.

The Social Biology of Microbial Communities

The Social Biology of Microbial Communities PDF Author: Institute of Medicine
Publisher: National Academies Press
ISBN: 0309264324
Category : Medical
Languages : en
Pages : 633

Book Description
Beginning with the germ theory of disease in the 19th century and extending through most of the 20th century, microbes were believed to live their lives as solitary, unicellular, disease-causing organisms . This perception stemmed from the focus of most investigators on organisms that could be grown in the laboratory as cellular monocultures, often dispersed in liquid, and under ambient conditions of temperature, lighting, and humidity. Most such inquiries were designed to identify microbial pathogens by satisfying Koch's postulates.3 This pathogen-centric approach to the study of microorganisms produced a metaphorical "war" against these microbial invaders waged with antibiotic therapies, while simultaneously obscuring the dynamic relationships that exist among and between host organisms and their associated microorganisms-only a tiny fraction of which act as pathogens. Despite their obvious importance, very little is actually known about the processes and factors that influence the assembly, function, and stability of microbial communities. Gaining this knowledge will require a seismic shift away from the study of individual microbes in isolation to inquiries into the nature of diverse and often complex microbial communities, the forces that shape them, and their relationships with other communities and organisms, including their multicellular hosts. On March 6 and 7, 2012, the Institute of Medicine's (IOM's) Forum on Microbial Threats hosted a public workshop to explore the emerging science of the "social biology" of microbial communities. Workshop presentations and discussions embraced a wide spectrum of topics, experimental systems, and theoretical perspectives representative of the current, multifaceted exploration of the microbial frontier. Participants discussed ecological, evolutionary, and genetic factors contributing to the assembly, function, and stability of microbial communities; how microbial communities adapt and respond to environmental stimuli; theoretical and experimental approaches to advance this nascent field; and potential applications of knowledge gained from the study of microbial communities for the improvement of human, animal, plant, and ecosystem health and toward a deeper understanding of microbial diversity and evolution. The Social Biology of Microbial Communities: Workshop Summary further explains the happenings of the workshop.

Microbial Evolution and Co-Adaptation

Microbial Evolution and Co-Adaptation PDF Author: Institute of Medicine
Publisher: National Academies Press
ISBN: 0309131219
Category : Science
Languages : en
Pages : 330

Book Description
Dr. Joshua Lederberg - scientist, Nobel laureate, visionary thinker, and friend of the Forum on Microbial Threats - died on February 2, 2008. It was in his honor that the Institute of Medicine's Forum on Microbial Threats convened a public workshop on May 20-21, 2008, to examine Dr. Lederberg's scientific and policy contributions to the marketplace of ideas in the life sciences, medicine, and public policy. The resulting workshop summary, Microbial Evolution and Co-Adaptation, demonstrates the extent to which conceptual and technological developments have, within a few short years, advanced our collective understanding of the microbiome, microbial genetics, microbial communities, and microbe-host-environment interactions.

Disturbance Ecology of Soil Microbial Communities in Response to the Centralia, Pa Coal Fire

Disturbance Ecology of Soil Microbial Communities in Response to the Centralia, Pa Coal Fire PDF Author: Jackson Winther Sorensen
Publisher:
ISBN: 9781392760239
Category : Electronic dissertations
Languages : en
Pages : 218

Book Description
Microbial communities are ubiquitous in our world and play important roles in biogeochemical and ecosystems processes on Earth. The ability of these microbial communities to provide these different processes is frequently tied to their community structure, which can be thought of both in terms of membership (i.e. who is there) and the relative abundance of these members. Changes in environmental conditions often lead to changes in microbial community structure as well. Microbial communities are formed through the process of assembly, which in turn is driven by the four processes of 1) Selection 2) Dispersal 3) Drift and 4) Diversification. Understanding the relative importance of each of these processes in different systems is important for predicting how microbial communities will change in response to disturbances. This dissertation presents work that uses the coal fire in Centralia, PA as a model press disturbance for understanding soil microbial community responses to and recovery from disturbance. The experiments herein aim to shed light the relative roles of Selection, Dispersal, and Drift in governing these responses in soil microbial communities experience a temperature disturbance. An observation study of a chronosequence of fire disturbance in Centralia, PA is used to generate hypotheses as to the relative roles of Selection, Dispersal, and Drift in the assembly of soil microbial communities experiencing a temperature disturbance. Further, an in depth look at some of these communities using shotgun metagenomics is used to observe specific microbial traits and characteristics selected for by the temperature disturbance. Finally, a laboratory soil mesocosm warming experiment investigates the relative influence of Dispersal and dormancy in governing responses to and recovery from disturbance.

Microbial Communities

Microbial Communities PDF Author: Heribert Insam
Publisher: Springer Science & Business Media
ISBN: 3642606946
Category : Science
Languages : en
Pages : 273

Book Description
Research on decomposer communities of terrestrial ecosystems for a long time has focussed on microbial biomass and gross turnover parameters. Recently, more and more attempts are made to look beyond the biomass, and more specifically determine functions and populations on a smaller scale-in time and space. A multitude of techniques is being improved and developed. Garland and Mills (1991) triggered a series of publications on substrate utilization tests in the field of microbial ecology. Despite several promising results for different applications in different laboratories, many problems concerning the assay and the interpretation of results became evident. After individual discussions on the approach with colleagues from various laboratories we started to plan a workshop on the matter. The response on our first circular was extraordinary, and instead of a small workshop it became a meeting with almost 150 participants. The meeting was named 'Substrate use for characterization of microbial communities in terrestrial ecosystems' (SUBMECO) and was held in Innsbruck, Austria, from Oct. 16-18, 1996. The very focussed scope attracted enthusiastic advocates of the approach, and also serious critics. Some of the topics concerned improvements of current inoculation and incubation techniques, ranging from sample pre-treatment, inoculum density and incubation temperature to statistical data handling. New methods for calculating microbial diversity were proposed, as well as bootstrap methods that allow statistics with many variables on a relatively low number of replicates.

Biological Diversity and Function in Soils

Biological Diversity and Function in Soils PDF Author: Richard Bardgett
Publisher: Cambridge University Press
ISBN: 0521847095
Category : Nature
Languages : en
Pages : 429

Book Description
The dynamic nature of current research into soil biodiversity is reflected in this excellent volume.

Environmental and Microbial Relationships

Environmental and Microbial Relationships PDF Author: Irina S. Druzhinina
Publisher: Springer
ISBN: 3319295322
Category : Science
Languages : en
Pages : 301

Book Description
This volume provides insights into current research on fungal populations, communities and their interactions with other organisms. It focuses on fungal responses to the physical environment; interactions with bacteria, other fungi, invertebrates and plants; the role of fungi in ecosystem processes such as decomposition and nutrient cycling; and aspects of biogeography and conservation. Since the publication of the second edition of Volume IV in 2007, the massive use of “omics” methods has revolutionized our understanding of fungal lifestyles. Highlighting these advances, the third edition has been completely updated and revised. Several chapters deal with various applications of genomics and transcriptomics in biological pest control, as well as interactions with other living systems. This is an invaluable source of information both for scientists who wish to update their knowledge of current advances and for graduate students interested in obtaining a comprehensive introduction to this field of research.