Author: Rand R. Wilcox
Publisher: Academic Press
ISBN: 0123869838
Category : Mathematics
Languages : en
Pages : 713
Book Description
"This book focuses on the practical aspects of modern and robust statistical methods. The increased accuracy and power of modern methods, versus conventional approaches to the analysis of variance (ANOVA) and regression, is remarkable. Through a combination of theoretical developments, improved and more flexible statistical methods, and the power of the computer, it is now possible to address problems with standard methods that seemed insurmountable only a few years ago"--
Introduction to Robust Estimation and Hypothesis Testing
Author: Rand R. Wilcox
Publisher: Academic Press
ISBN: 0123869838
Category : Mathematics
Languages : en
Pages : 713
Book Description
"This book focuses on the practical aspects of modern and robust statistical methods. The increased accuracy and power of modern methods, versus conventional approaches to the analysis of variance (ANOVA) and regression, is remarkable. Through a combination of theoretical developments, improved and more flexible statistical methods, and the power of the computer, it is now possible to address problems with standard methods that seemed insurmountable only a few years ago"--
Publisher: Academic Press
ISBN: 0123869838
Category : Mathematics
Languages : en
Pages : 713
Book Description
"This book focuses on the practical aspects of modern and robust statistical methods. The increased accuracy and power of modern methods, versus conventional approaches to the analysis of variance (ANOVA) and regression, is remarkable. Through a combination of theoretical developments, improved and more flexible statistical methods, and the power of the computer, it is now possible to address problems with standard methods that seemed insurmountable only a few years ago"--
Introduction to Robust Estimation and Hypothesis Testing
Author: Rand R. Wilcox
Publisher: Academic Press
ISBN: 0127515429
Category : Mathematics
Languages : en
Pages : 610
Book Description
This revised book provides a thorough explanation of the foundation of robust methods, incorporating the latest updates on R and S-Plus, robust ANOVA (Analysis of Variance) and regression. It guides advanced students and other professionals through the basic strategies used for developing practical solutions to problems, and provides a brief background on the foundations of modern methods, placing the new methods in historical context. Author Rand Wilcox includes chapter exercises and many real-world examples that illustrate how various methods perform in different situations. Introduction to Robust Estimation and Hypothesis Testing, Second Edition, focuses on the practical applications of modern, robust methods which can greatly enhance our chances of detecting true differences among groups and true associations among variables. * Covers latest developments in robust regression * Covers latest improvements in ANOVA * Includes newest rank-based methods * Describes and illustrated easy to use software
Publisher: Academic Press
ISBN: 0127515429
Category : Mathematics
Languages : en
Pages : 610
Book Description
This revised book provides a thorough explanation of the foundation of robust methods, incorporating the latest updates on R and S-Plus, robust ANOVA (Analysis of Variance) and regression. It guides advanced students and other professionals through the basic strategies used for developing practical solutions to problems, and provides a brief background on the foundations of modern methods, placing the new methods in historical context. Author Rand Wilcox includes chapter exercises and many real-world examples that illustrate how various methods perform in different situations. Introduction to Robust Estimation and Hypothesis Testing, Second Edition, focuses on the practical applications of modern, robust methods which can greatly enhance our chances of detecting true differences among groups and true associations among variables. * Covers latest developments in robust regression * Covers latest improvements in ANOVA * Includes newest rank-based methods * Describes and illustrated easy to use software
Optimal and Robust Estimation
Author: Frank L. Lewis
Publisher: CRC Press
ISBN: 1420008293
Category : Technology & Engineering
Languages : en
Pages : 546
Book Description
More than a decade ago, world-renowned control systems authority Frank L. Lewis introduced what would become a standard textbook on estimation, under the title Optimal Estimation, used in top universities throughout the world. The time has come for a new edition of this classic text, and Lewis enlisted the aid of two accomplished experts to bring the book completely up to date with the estimation methods driving today's high-performance systems. A Classic Revisited Optimal and Robust Estimation: With an Introduction to Stochastic Control Theory, Second Edition reflects new developments in estimation theory and design techniques. As the title suggests, the major feature of this edition is the inclusion of robust methods. Three new chapters cover the robust Kalman filter, H-infinity filtering, and H-infinity filtering of discrete-time systems. Modern Tools for Tomorrow's Engineers This text overflows with examples that highlight practical applications of the theory and concepts. Design algorithms appear conveniently in tables, allowing students quick reference, easy implementation into software, and intuitive comparisons for selecting the best algorithm for a given application. In addition, downloadable MATLAB® code allows students to gain hands-on experience with industry-standard software tools for a wide variety of applications. This cutting-edge and highly interactive text makes teaching, and learning, estimation methods easier and more modern than ever.
Publisher: CRC Press
ISBN: 1420008293
Category : Technology & Engineering
Languages : en
Pages : 546
Book Description
More than a decade ago, world-renowned control systems authority Frank L. Lewis introduced what would become a standard textbook on estimation, under the title Optimal Estimation, used in top universities throughout the world. The time has come for a new edition of this classic text, and Lewis enlisted the aid of two accomplished experts to bring the book completely up to date with the estimation methods driving today's high-performance systems. A Classic Revisited Optimal and Robust Estimation: With an Introduction to Stochastic Control Theory, Second Edition reflects new developments in estimation theory and design techniques. As the title suggests, the major feature of this edition is the inclusion of robust methods. Three new chapters cover the robust Kalman filter, H-infinity filtering, and H-infinity filtering of discrete-time systems. Modern Tools for Tomorrow's Engineers This text overflows with examples that highlight practical applications of the theory and concepts. Design algorithms appear conveniently in tables, allowing students quick reference, easy implementation into software, and intuitive comparisons for selecting the best algorithm for a given application. In addition, downloadable MATLAB® code allows students to gain hands-on experience with industry-standard software tools for a wide variety of applications. This cutting-edge and highly interactive text makes teaching, and learning, estimation methods easier and more modern than ever.
Breakthroughs in Statistics
Author: Samuel Kotz
Publisher: Springer Science & Business Media
ISBN: 1461206677
Category : Mathematics
Languages : en
Pages : 576
Book Description
Volume III includes more selections of articles that have initiated fundamental changes in statistical methodology. It contains articles published before 1980 that were overlooked in the previous two volumes plus articles from the 1980's - all of them chosen after consulting many of today's leading statisticians.
Publisher: Springer Science & Business Media
ISBN: 1461206677
Category : Mathematics
Languages : en
Pages : 576
Book Description
Volume III includes more selections of articles that have initiated fundamental changes in statistical methodology. It contains articles published before 1980 that were overlooked in the previous two volumes plus articles from the 1980's - all of them chosen after consulting many of today's leading statisticians.
Robust Estimation and Testing
Author: Robert G. Staudte
Publisher: John Wiley & Sons
ISBN: 1118165497
Category : Mathematics
Languages : en
Pages : 382
Book Description
An introduction to the theory and methods of robust statistics, providing students with practical methods for carrying out robust procedures in a variety of statistical contexts and explaining the advantages of these procedures. In addition, the text develops techniques and concepts likely to be useful in the future analysis of new statistical models and procedures. Emphasizing the concepts of breakdown point and influence functon of an estimator, it demonstrates the technique of expressing an estimator as a descriptive measure from which its influence function can be derived and then used to explore the efficiency and robustness properties of the estimator. Mathematical techniques are complemented by computational algorithms and Minitab macros for finding bootstrap and influence function estimates of standard errors of the estimators, robust confidence intervals, robust regression estimates and their standard errors. Includes examples and problems.
Publisher: John Wiley & Sons
ISBN: 1118165497
Category : Mathematics
Languages : en
Pages : 382
Book Description
An introduction to the theory and methods of robust statistics, providing students with practical methods for carrying out robust procedures in a variety of statistical contexts and explaining the advantages of these procedures. In addition, the text develops techniques and concepts likely to be useful in the future analysis of new statistical models and procedures. Emphasizing the concepts of breakdown point and influence functon of an estimator, it demonstrates the technique of expressing an estimator as a descriptive measure from which its influence function can be derived and then used to explore the efficiency and robustness properties of the estimator. Mathematical techniques are complemented by computational algorithms and Minitab macros for finding bootstrap and influence function estimates of standard errors of the estimators, robust confidence intervals, robust regression estimates and their standard errors. Includes examples and problems.
Robustness in Statistics
Author: Robert L. Launer
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 330
Book Description
An introduction to robust estimation; The robustness of residual displays; Robust smoothing; Robust pitman-like estimators; Robust estimation in the presence of outliers; Study of robustness by simulation: particularly improvement by adjustment and combination; Robust techniques for the user; Application of robust regression to trajectory data reduction; Tests for censoring of extreme values (especially) when population distributions are incompletely defined; Robust estimation for time series autoregressions; Robust techniques in communication; Robustness in the strategy of scientific model building; A density-quantile function perspective on robust.
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 330
Book Description
An introduction to robust estimation; The robustness of residual displays; Robust smoothing; Robust pitman-like estimators; Robust estimation in the presence of outliers; Study of robustness by simulation: particularly improvement by adjustment and combination; Robust techniques for the user; Application of robust regression to trajectory data reduction; Tests for censoring of extreme values (especially) when population distributions are incompletely defined; Robust estimation for time series autoregressions; Robust techniques in communication; Robustness in the strategy of scientific model building; A density-quantile function perspective on robust.
Robust Statistics
Author: Ricardo A. Maronna
Publisher: John Wiley & Sons
ISBN: 1119214688
Category : Mathematics
Languages : en
Pages : 466
Book Description
A new edition of this popular text on robust statistics, thoroughly updated to include new and improved methods and focus on implementation of methodology using the increasingly popular open-source software R. Classical statistics fail to cope well with outliers associated with deviations from standard distributions. Robust statistical methods take into account these deviations when estimating the parameters of parametric models, thus increasing the reliability of fitted models and associated inference. This new, second edition of Robust Statistics: Theory and Methods (with R) presents a broad coverage of the theory of robust statistics that is integrated with computing methods and applications. Updated to include important new research results of the last decade and focus on the use of the popular software package R, it features in-depth coverage of the key methodology, including regression, multivariate analysis, and time series modeling. The book is illustrated throughout by a range of examples and applications that are supported by a companion website featuring data sets and R code that allow the reader to reproduce the examples given in the book. Unlike other books on the market, Robust Statistics: Theory and Methods (with R) offers the most comprehensive, definitive, and up-to-date treatment of the subject. It features chapters on estimating location and scale; measuring robustness; linear regression with fixed and with random predictors; multivariate analysis; generalized linear models; time series; numerical algorithms; and asymptotic theory of M-estimates. Explains both the use and theoretical justification of robust methods Guides readers in selecting and using the most appropriate robust methods for their problems Features computational algorithms for the core methods Robust statistics research results of the last decade included in this 2nd edition include: fast deterministic robust regression, finite-sample robustness, robust regularized regression, robust location and scatter estimation with missing data, robust estimation with independent outliers in variables, and robust mixed linear models. Robust Statistics aims to stimulate the use of robust methods as a powerful tool to increase the reliability and accuracy of statistical modelling and data analysis. It is an ideal resource for researchers, practitioners, and graduate students in statistics, engineering, computer science, and physical and social sciences.
Publisher: John Wiley & Sons
ISBN: 1119214688
Category : Mathematics
Languages : en
Pages : 466
Book Description
A new edition of this popular text on robust statistics, thoroughly updated to include new and improved methods and focus on implementation of methodology using the increasingly popular open-source software R. Classical statistics fail to cope well with outliers associated with deviations from standard distributions. Robust statistical methods take into account these deviations when estimating the parameters of parametric models, thus increasing the reliability of fitted models and associated inference. This new, second edition of Robust Statistics: Theory and Methods (with R) presents a broad coverage of the theory of robust statistics that is integrated with computing methods and applications. Updated to include important new research results of the last decade and focus on the use of the popular software package R, it features in-depth coverage of the key methodology, including regression, multivariate analysis, and time series modeling. The book is illustrated throughout by a range of examples and applications that are supported by a companion website featuring data sets and R code that allow the reader to reproduce the examples given in the book. Unlike other books on the market, Robust Statistics: Theory and Methods (with R) offers the most comprehensive, definitive, and up-to-date treatment of the subject. It features chapters on estimating location and scale; measuring robustness; linear regression with fixed and with random predictors; multivariate analysis; generalized linear models; time series; numerical algorithms; and asymptotic theory of M-estimates. Explains both the use and theoretical justification of robust methods Guides readers in selecting and using the most appropriate robust methods for their problems Features computational algorithms for the core methods Robust statistics research results of the last decade included in this 2nd edition include: fast deterministic robust regression, finite-sample robustness, robust regularized regression, robust location and scatter estimation with missing data, robust estimation with independent outliers in variables, and robust mixed linear models. Robust Statistics aims to stimulate the use of robust methods as a powerful tool to increase the reliability and accuracy of statistical modelling and data analysis. It is an ideal resource for researchers, practitioners, and graduate students in statistics, engineering, computer science, and physical and social sciences.
Robust Statistics
Author: Frank R. Hampel
Publisher: John Wiley & Sons
ISBN: 1118150686
Category : Mathematics
Languages : en
Pages : 502
Book Description
The Wiley-Interscience Paperback Series consists of selectedbooks that have been made more accessible to consumers in an effortto increase global appeal and general circulation. With these newunabridged softcover volumes, Wiley hopes to extend the lives ofthese works by making them available to future generations ofstatisticians, mathematicians, and scientists. "This is a nice book containing a wealth of information, much ofit due to the authors. . . . If an instructor designing such acourse wanted a textbook, this book would be the best choiceavailable. . . . There are many stimulating exercises, and the bookalso contains an excellent index and an extensive list ofreferences." —Technometrics "[This] book should be read carefully by anyone who isinterested in dealing with statistical models in a realisticfashion." —American Scientist Introducing concepts, theory, and applications, RobustStatistics is accessible to a broad audience, avoidingallusions to high-powered mathematics while emphasizing ideas,heuristics, and background. The text covers the approach based onthe influence function (the effect of an outlier on an estimater,for example) and related notions such as the breakdown point. Italso treats the change-of-variance function, fundamental conceptsand results in the framework of estimation of a single parameter,and applications to estimation of covariance matrices andregression parameters.
Publisher: John Wiley & Sons
ISBN: 1118150686
Category : Mathematics
Languages : en
Pages : 502
Book Description
The Wiley-Interscience Paperback Series consists of selectedbooks that have been made more accessible to consumers in an effortto increase global appeal and general circulation. With these newunabridged softcover volumes, Wiley hopes to extend the lives ofthese works by making them available to future generations ofstatisticians, mathematicians, and scientists. "This is a nice book containing a wealth of information, much ofit due to the authors. . . . If an instructor designing such acourse wanted a textbook, this book would be the best choiceavailable. . . . There are many stimulating exercises, and the bookalso contains an excellent index and an extensive list ofreferences." —Technometrics "[This] book should be read carefully by anyone who isinterested in dealing with statistical models in a realisticfashion." —American Scientist Introducing concepts, theory, and applications, RobustStatistics is accessible to a broad audience, avoidingallusions to high-powered mathematics while emphasizing ideas,heuristics, and background. The text covers the approach based onthe influence function (the effect of an outlier on an estimater,for example) and related notions such as the breakdown point. Italso treats the change-of-variance function, fundamental conceptsand results in the framework of estimation of a single parameter,and applications to estimation of covariance matrices andregression parameters.
Introduction to Robust Estimation and Hypothesis Testing
Author: Rand R. Wilcox
Publisher: Elsevier
ISBN: 008047053X
Category : Mathematics
Languages : en
Pages : 609
Book Description
This revised book provides a thorough explanation of the foundation of robust methods, incorporating the latest updates on R and S-Plus, robust ANOVA (Analysis of Variance) and regression. It guides advanced students and other professionals through the basic strategies used for developing practical solutions to problems, and provides a brief background on the foundations of modern methods, placing the new methods in historical context. Author Rand Wilcox includes chapter exercises and many real-world examples that illustrate how various methods perform in different situations.Introduction to Robust Estimation and Hypothesis Testing, Second Edition, focuses on the practical applications of modern, robust methods which can greatly enhance our chances of detecting true differences among groups and true associations among variables.* Covers latest developments in robust regression* Covers latest improvements in ANOVA* Includes newest rank-based methods* Describes and illustrated easy to use software
Publisher: Elsevier
ISBN: 008047053X
Category : Mathematics
Languages : en
Pages : 609
Book Description
This revised book provides a thorough explanation of the foundation of robust methods, incorporating the latest updates on R and S-Plus, robust ANOVA (Analysis of Variance) and regression. It guides advanced students and other professionals through the basic strategies used for developing practical solutions to problems, and provides a brief background on the foundations of modern methods, placing the new methods in historical context. Author Rand Wilcox includes chapter exercises and many real-world examples that illustrate how various methods perform in different situations.Introduction to Robust Estimation and Hypothesis Testing, Second Edition, focuses on the practical applications of modern, robust methods which can greatly enhance our chances of detecting true differences among groups and true associations among variables.* Covers latest developments in robust regression* Covers latest improvements in ANOVA* Includes newest rank-based methods* Describes and illustrated easy to use software
Robust Estimates of Location
Author: David F. Andrews
Publisher: Princeton University Press
ISBN: 1400867010
Category : Mathematics
Languages : en
Pages : 384
Book Description
Because estimation involves inferring information about an unknown quantity on the basis of available data, the selection of an estimator is influenced by its ability to perform well under the conditions that are assumed to underlie the data. Since these conditions are never known exactly, the estimators chosen must be robust; i.e., they must be able to perform well under a variety of underlying conditions. The theory of robust estimation is based on specified properties of specified estimators under specified conditions. This book was written as the result of a study undertaken to establish the interaction of these three components over as large a range as possible. Originally published in 1972. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Publisher: Princeton University Press
ISBN: 1400867010
Category : Mathematics
Languages : en
Pages : 384
Book Description
Because estimation involves inferring information about an unknown quantity on the basis of available data, the selection of an estimator is influenced by its ability to perform well under the conditions that are assumed to underlie the data. Since these conditions are never known exactly, the estimators chosen must be robust; i.e., they must be able to perform well under a variety of underlying conditions. The theory of robust estimation is based on specified properties of specified estimators under specified conditions. This book was written as the result of a study undertaken to establish the interaction of these three components over as large a range as possible. Originally published in 1972. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.