Robust Control of a Multi-phase Interleaved Boost Converter for Photovoltaic Application Using Æ-synthesis Approach PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Robust Control of a Multi-phase Interleaved Boost Converter for Photovoltaic Application Using Æ-synthesis Approach PDF full book. Access full book title Robust Control of a Multi-phase Interleaved Boost Converter for Photovoltaic Application Using Æ-synthesis Approach by Badur Mueedh Alharbi. Download full books in PDF and EPUB format.

Robust Control of a Multi-phase Interleaved Boost Converter for Photovoltaic Application Using Æ-synthesis Approach

Robust Control of a Multi-phase Interleaved Boost Converter for Photovoltaic Application Using Æ-synthesis Approach PDF Author: Badur Mueedh Alharbi
Publisher:
ISBN:
Category :
Languages : en
Pages : 294

Book Description
The high demand of energy efficiency has led to the development power converter topologies and control system designs within the field of power electronics. Recent advances of interleaved boost converters have showed improved features between the power conversion topologies in several aspects, including power quality, efficiency, sustainability and reliability. Interleaved boost converter with multi-phase technique for PV system is an attractive area for distributed power generation. During load variation or power supply changes due to the weather changes the output voltage requires a robust control to maintain stable and perform robustness. Connecting converters in series and parallel have the advantages of modularity, scalability, reliability, distributed location of capacitors which make it favorable in industrial applications. In this dissertation, a design of æ-synthesis controller is proposed to address the design specification of multi-phase interleaved boost converter at several power applications. This thesis contributes to the ongoing research on the IBC topology by proposing the modeling, applications uses and control techniques to the stability challenges. The research proposes a new strategy of robust control applied to a non-isolated DC/DC interleaved boost converter with a high step voltage ratio as multi-phase, multi-stage which is favorable for PV applications. The proposed controller is designed based on æ-synthesis technique to approach a high regulated output voltage, better efficiency, gain a fast regulation response against disturbance and load variation with a better dynamic performance and achieve robustness. The controller has been simulated using MATLAB/Simulink software and validated through experimental results which show the effectiveness and the robustness.

Robust Control of a Multi-phase Interleaved Boost Converter for Photovoltaic Application Using Æ-synthesis Approach

Robust Control of a Multi-phase Interleaved Boost Converter for Photovoltaic Application Using Æ-synthesis Approach PDF Author: Badur Mueedh Alharbi
Publisher:
ISBN:
Category :
Languages : en
Pages : 294

Book Description
The high demand of energy efficiency has led to the development power converter topologies and control system designs within the field of power electronics. Recent advances of interleaved boost converters have showed improved features between the power conversion topologies in several aspects, including power quality, efficiency, sustainability and reliability. Interleaved boost converter with multi-phase technique for PV system is an attractive area for distributed power generation. During load variation or power supply changes due to the weather changes the output voltage requires a robust control to maintain stable and perform robustness. Connecting converters in series and parallel have the advantages of modularity, scalability, reliability, distributed location of capacitors which make it favorable in industrial applications. In this dissertation, a design of æ-synthesis controller is proposed to address the design specification of multi-phase interleaved boost converter at several power applications. This thesis contributes to the ongoing research on the IBC topology by proposing the modeling, applications uses and control techniques to the stability challenges. The research proposes a new strategy of robust control applied to a non-isolated DC/DC interleaved boost converter with a high step voltage ratio as multi-phase, multi-stage which is favorable for PV applications. The proposed controller is designed based on æ-synthesis technique to approach a high regulated output voltage, better efficiency, gain a fast regulation response against disturbance and load variation with a better dynamic performance and achieve robustness. The controller has been simulated using MATLAB/Simulink software and validated through experimental results which show the effectiveness and the robustness.

High Efficient Interleaved Boost Converter with Novel Switch Adaptive Control in Photovoltaic Application

High Efficient Interleaved Boost Converter with Novel Switch Adaptive Control in Photovoltaic Application PDF Author: Saleh Hassan Elkelani Babaa
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description


A Multiphase Interleaved Boost Converter with Coupled Inductor for Fuel Cell APU Applications

A Multiphase Interleaved Boost Converter with Coupled Inductor for Fuel Cell APU Applications PDF Author: Lai Shih Chieh
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description


Design and Control of a 6-phase Interleaved Boost Converter Based on SiC Semiconductors with EIS Functionality for Fuel Cell Electric Vehicle

Design and Control of a 6-phase Interleaved Boost Converter Based on SiC Semiconductors with EIS Functionality for Fuel Cell Electric Vehicle PDF Author: Hanqing Wang
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description
The objective of this thesis work is devoted to the design and control of a DC/DC boost converter for Fuel Cell Electric Vehicle (FCEV) application. A 6-phase Interleaved Boost Converter (IBC) based on Silicon Carbide (SiC) semiconductors and inversed coupled inductors of cyclic cascade structure is proposed. The input current ripple is reduced significantly and the lifespan of Polymer Electrolyte Membrane Fuel Cell (PEMFC) can be extended. Low power losses, good thermal performance and high switching frequency have been gained by the selected SiC-based semiconductors. The volumes of passive components (inductors and capacitors) are reduced. Thanks to the inverse coupled inductors, the core losses and copper losses are decreased and the compact magnetic component is achieved.Sliding-Mode Control (SMC) strategy is developed due to its high robust to parameter variations. on-line Electrochemical Impedance Spectroscopy (EIS) detection functionality is successfully integrated with SMC. No additional equipment and sensor is required.The real-time Hardwar In the Loop (HIL) validation of the proposed converter is achieved by implement the power part into the FPGA and the control into the microprocessor in the MicroLabBox prototyping system from dSPACE. The comparison between off-line simulation and HIL validation demonstrated the dynamic behavior of the proposed converter and validated the implementation of the control into a real time controller before future tests on experimental test bench.

Automated Synthesis Tool for Design Optimization of Power Electronic Converters

Automated Synthesis Tool for Design Optimization of Power Electronic Converters PDF Author: Mehran Mirjafari
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Designers of power electronic converters usually face the challenge of having multiple performance indices that must be simultaneously optimized, such as maximizing efficiency while minimizing mass or maximizing reliability while minimizing cost. The experienced engineer applies his or her judgment to reduce the number of possible designs to a manageable number of feasible designs for which to prototype and test; thus, the optimality of this design-space reduction is directly dependent upon the experience, and expertise and biases of the designer. The practitioner is familiar with tradeoff analysis; however, simple tradeoff studies can become difficult or even intractable if multiple metrics are considered. Hence a scientific and systematic approach is needed. In this dissertation, a multi-objective optimization framework is presented as a design tool. Optimization of power electronic converters is certainly not a new subject. However, when limited to off-the-shelf components, the resulting system is really optimized only over the set of commercially available components, which may represent only a subset of the design space; the reachable space limited by available components and technologies. While this approach is suited to cost-reduce an existing design, it offers little insight into design possibilities for greenfield projects. Instead, this work uses the Technology Characterization Methods (TCM) to broaden the reachable design space by considering fundamental component attributes. The result is the specification for the components that create the optimal design rather than an evaluation of an apriori selected set of candidate components. A unique outcome of this approach is that new technology development vectors may emerge to develop optimized components for the optimized power converter. The approach presented in this work uses a mathematical descriptive language to abstract the characteristics and attributes of the components used in a power electronic converter in a way suitable for multi-objective and constrained optimization methods. This dissertation will use Technology Characterization Methods (TCM) to bridge the gap between high-level performance attributes and low-level design attributes where direct relationship between these two does not currently exist. The loss and size models for inductors, capacitors, IGBTs, MOSFETs and heat sinks will be used to form objective functions for the multi-objective optimization problem. A single phase IGBT-based inverter is optimized for efficiency and volume based on the component models derived using TCM. Comparing the obtained designs to a design, which can be made from commercial off-the-shelf components, shows that converter design can be optimized beyond what is possible from using only off-the-shelf components. A module-integrated photovoltaic inverter is also optimized for efficiency, volume and reliability. An actual converter is constructed using commercial off-the-shelf components. The converter design is chosen as close as possible to a point obtained by optimization. Experimental results show that the converter modeling is accurate. A new approach for evaluation of efficiency in photovoltaic converter is also proposed and the front-end portion of a photovoltaic converter is optimized for this efficiency, as well as reliability and volume. The electronic version of this dissertation is accessible from http://hdl.handle.net/1969.1/149257

Design and Control of the Dual-interleaved Boost Converter with Interphase Transformer

Design and Control of the Dual-interleaved Boost Converter with Interphase Transformer PDF Author: Gerrardo Calderon-Lopez
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description


Design and Control of the Dual-interleaved Boost Converter with Interphase Transformer

Design and Control of the Dual-interleaved Boost Converter with Interphase Transformer PDF Author: Gerrardo Calderon-Lopez
Publisher:
ISBN:
Category :
Languages : en
Pages : 208

Book Description


High Voltage Boost DC-DC Converter Suitable for Variable Voltage Sources and High Power Photovoltaic Application

High Voltage Boost DC-DC Converter Suitable for Variable Voltage Sources and High Power Photovoltaic Application PDF Author: Fredrick Mukundi Mwaniki
Publisher:
ISBN:
Category : Photovoltaic cells
Languages : en
Pages : 312

Book Description
Important considerations of a photovoltaic (PV) source are achieving a high voltage and drawing currents with very little ripple component from it. Furthermore, the output from such a source is variable depending on irradiation and temperature. In this research, literature review of prior methods employed to boost the output voltage of a PV source is examined and their limitations identified. This research then proposes a multi-phase tapped-coupled inductor boost DC-DC converter that can achieve high voltage boost ratios, without adversely compromising performance, to be used as an interface to a PV source. The proposed converter achieves minimal current and voltage ripple both at the input and output. The suitability of the proposed converter topology for variable input voltage and variable power operation is demonstrated in this dissertation. The proposed converter is also shown to have good performance at high power levels, making it very suitable for high power applications. Detailed analysis of the proposed converter is done. Advantages of the proposed converter are explained analytically and confirmed through simulations and experimentally. Regulation of the converter output voltage is also explained and implemented using a digital controller. The simulation and experimental results confirm that the proposed converter is suitable for high power as well as variable power, variable voltage applications where high voltage boost ratios are required.

Control and Nonlinear Dynamics on Energy Conversion Systems

Control and Nonlinear Dynamics on Energy Conversion Systems PDF Author: Herbert Ho-Ching Iu
Publisher: MDPI
ISBN: 3039211102
Category : Technology & Engineering
Languages : en
Pages : 435

Book Description
The ever-increasing need for higher efficiency, smaller size, and lower cost make the analysis, understanding, and design of energy conversion systems extremely important, interesting, and even imperative. One of the most neglected features in the study of such systems is the effect of the inherent nonlinearities on the stability of the system. Due to these nonlinearities, these devices may exhibit undesirable and complex dynamics, which are the focus of many researchers. Even though a lot of research has taken place in this area during the last 20 years, it is still an active research topic for mainstream power engineers. This research has demonstrated that these systems can become unstable with a direct result in increased losses, extra subharmonics, and even uncontrollability/unobservability. The detailed study of these systems can help in the design of smaller, lighter, and less expensive converters that are particularly important in emerging areas of research like electric vehicles, smart grids, renewable energy sources, and others. The aim of this Special Issue is to cover control and nonlinear aspects of instabilities in different energy conversion systems: theoretical, analysis modelling, and practical solutions for such emerging applications. In this Special Issue, we present novel research works in different areas of the control and nonlinear dynamics of energy conversion systems.

Digital Control in Power Electronics

Digital Control in Power Electronics PDF Author: Simone Buso
Publisher: Springer Nature
ISBN: 3031024958
Category : Technology & Engineering
Languages : en
Pages : 153

Book Description
This book presents the reader, whether an electrical engineering student in power electronics or a design engineer, some typical power converter control problems and their basic digital solutions, based on the most widespread digital control techniques. The presentation is focused on different applications of the same power converter topology, the half-bridge voltage source inverter, considered both in its single- and three-phase implementation. This is chosen as the case study because, besides being simple and well known, it allows the discussion of a significant spectrum of the more frequently encountered digital control applications in power electronics, from digital pulse width modulation (DPWM) and space vector modulation (SVM), to inverter output current and voltage control. The book aims to serve two purposes: to give a basic, introductory knowledge of the digital control techniques applied to power converters, and to raise the interest for discrete time control theory, stimulating new developments in its application to switching power converters.