Robust a Posteriori Error Estimation for Discontinuous Galerkin Methods for Convection Diffusion Problems PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Robust a Posteriori Error Estimation for Discontinuous Galerkin Methods for Convection Diffusion Problems PDF full book. Access full book title Robust a Posteriori Error Estimation for Discontinuous Galerkin Methods for Convection Diffusion Problems by . Download full books in PDF and EPUB format.

Robust a Posteriori Error Estimation for Discontinuous Galerkin Methods for Convection Diffusion Problems

Robust a Posteriori Error Estimation for Discontinuous Galerkin Methods for Convection Diffusion Problems PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
The present thesis is concerned with the development and practical implementation of robust a-posteriori error estimators for discontinuous Galerkin (DG) methods for convection-diffusion problems. It is well-known that solutions to convection-diffusion problems may have boundary and internal layers of small width where their gradients change rapidly. A powerful approach to numerically resolve these layers is based on using hp-adaptive finite element methods, which control and minimize the discretization errors by locally adapting the mesh sizes (h-refinement) and the approximation orders (p-refinement) to the features of the problems. In this work, we choose DG methods to realize adaptive algorithms. These methods yield stable and robust discretization schemes for convection-dominated problems, and are naturally suited to handle local variations in the mesh sizes and approximation degrees as required for hp-adaptivity. At the heart of adaptive finite element methods are a-posteriori error estimators. They provide information on the errors on each element and indicate where local refinement/derefinement should be applied. An efficient error estimator should always yield an upper and lower bound of the discretization error in a suitable norm. For convection-diffusion problems, it is desirable that the estimator is also robust, meaning that the upper and lower bounds differ by a factor that is independent of the mesh Peclet number of the problem. We develop a new approach to obtain robust a-posteriori error estimates for convection-diffusion problems for h-version and hp-version DG methods. The main technical tools in our analysis are new hp-version approximation results of an averaging operator, which are derived for irregular hexahedral meshes in three dimensions, as well as for irregular anisotropic rectangular meshes in two dimensions. We present a series of numerical examples based on C++ implementations of our methods. The numerical results indicate that the erro.

Robust a Posteriori Error Estimation for Discontinuous Galerkin Methods for Convection Diffusion Problems

Robust a Posteriori Error Estimation for Discontinuous Galerkin Methods for Convection Diffusion Problems PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
The present thesis is concerned with the development and practical implementation of robust a-posteriori error estimators for discontinuous Galerkin (DG) methods for convection-diffusion problems. It is well-known that solutions to convection-diffusion problems may have boundary and internal layers of small width where their gradients change rapidly. A powerful approach to numerically resolve these layers is based on using hp-adaptive finite element methods, which control and minimize the discretization errors by locally adapting the mesh sizes (h-refinement) and the approximation orders (p-refinement) to the features of the problems. In this work, we choose DG methods to realize adaptive algorithms. These methods yield stable and robust discretization schemes for convection-dominated problems, and are naturally suited to handle local variations in the mesh sizes and approximation degrees as required for hp-adaptivity. At the heart of adaptive finite element methods are a-posteriori error estimators. They provide information on the errors on each element and indicate where local refinement/derefinement should be applied. An efficient error estimator should always yield an upper and lower bound of the discretization error in a suitable norm. For convection-diffusion problems, it is desirable that the estimator is also robust, meaning that the upper and lower bounds differ by a factor that is independent of the mesh Peclet number of the problem. We develop a new approach to obtain robust a-posteriori error estimates for convection-diffusion problems for h-version and hp-version DG methods. The main technical tools in our analysis are new hp-version approximation results of an averaging operator, which are derived for irregular hexahedral meshes in three dimensions, as well as for irregular anisotropic rectangular meshes in two dimensions. We present a series of numerical examples based on C++ implementations of our methods. The numerical results indicate that the erro.

Discontinuous Galerkin Method

Discontinuous Galerkin Method PDF Author: Vít Dolejší
Publisher: Springer
ISBN: 3319192671
Category : Mathematics
Languages : en
Pages : 575

Book Description
The subject of the book is the mathematical theory of the discontinuous Galerkin method (DGM), which is a relatively new technique for the numerical solution of partial differential equations. The book is concerned with the DGM developed for elliptic and parabolic equations and its applications to the numerical simulation of compressible flow. It deals with the theoretical as well as practical aspects of the DGM and treats the basic concepts and ideas of the DGM, as well as the latest significant findings and achievements in this area. The main benefit for readers and the book’s uniqueness lie in the fact that it is sufficiently detailed, extensive and mathematically precise, while at the same time providing a comprehensible guide through a wide spectrum of discontinuous Galerkin techniques and a survey of the latest efficient, accurate and robust discontinuous Galerkin schemes for the solution of compressible flow.

A Posteriori Error Estimation for Hybridized Mixed and Discontinuous Galerkin Methods

A Posteriori Error Estimation for Hybridized Mixed and Discontinuous Galerkin Methods PDF Author: Johannes Neher
Publisher: Logos Verlag Berlin GmbH
ISBN: 3832530886
Category : Mathematics
Languages : en
Pages : 106

Book Description
There is a variety of finite element based methods applicable to the discretization of second order elliptic boundary value problems in mixed form. However, it is expensive to solve the resulting discrete linear system due to its size and its algebraic structure. Hybridization serves as a tool to circumvent these difficulties. Furthermore hybridization is an elegant concept to establish connections among various finite element methods. In this work connections between the methods and their hybridized counterparts are established after showing the link between three different formulations of the elliptic model problem. The main part of the work contains the development of a reliable a posteriori error estimator, which is applicable to all of the methods above. This estimator is the key ingredient of an adaptive numerical approximation of the original boundary value problem. Finally, a number of numerical tests is discussed in order to exhibit the performance of the adaptive hybridized methods.

Adaptive Discontinuous Galerkin Methods for Non-linear Reactive Flows

Adaptive Discontinuous Galerkin Methods for Non-linear Reactive Flows PDF Author: Murat Uzunca
Publisher: Birkhäuser
ISBN: 3319301306
Category : Mathematics
Languages : en
Pages : 111

Book Description
The focus of this monograph is the development of space-time adaptive methods to solve the convection/reaction dominated non-stationary semi-linear advection diffusion reaction (ADR) equations with internal/boundary layers in an accurate and efficient way. After introducing the ADR equations and discontinuous Galerkin discretization, robust residual-based a posteriori error estimators in space and time are derived. The elliptic reconstruction technique is then utilized to derive the a posteriori error bounds for the fully discrete system and to obtain optimal orders of convergence.As coupled surface and subsurface flow over large space and time scales is described by (ADR) equation the methods described in this book are of high importance in many areas of Geosciences including oil and gas recovery, groundwater contamination and sustainable use of groundwater resources, storing greenhouse gases or radioactive waste in the subsurface.

Lagrange-Galerkin Methods for Unsteady Convection-diffusion Problems

Lagrange-Galerkin Methods for Unsteady Convection-diffusion Problems PDF Author: Paul D. Houston
Publisher:
ISBN:
Category : Convection (Meteorology)
Languages : en
Pages : 0

Book Description


A Posteriori Error Estimation Techniques for Finite Element Methods

A Posteriori Error Estimation Techniques for Finite Element Methods PDF Author: Rüdiger Verfürth
Publisher: OUP Oxford
ISBN: 0191668761
Category : Mathematics
Languages : en
Pages : 414

Book Description
Self-adaptive discretization methods are now an indispensable tool for the numerical solution of partial differential equations that arise from physical and technical applications. The aim is to obtain a numerical solution within a prescribed tolerance using a minimal amount of work. The main tools in achieving this goal are a posteriori error estimates which give global and local information on the error of the numerical solution and which can easily be computed from the given numerical solution and the data of the differential equation. This book reviews the most frequently used a posteriori error estimation techniques and applies them to a broad class of linear and nonlinear elliptic and parabolic equations. Although there are various approaches to adaptivity and a posteriori error estimation, they are all based on a few common principles. The main aim of the book is to elaborate these basic principles and to give guidelines for developing adaptive schemes for new problems. Chapters 1 and 2 are quite elementary and present various error indicators and their use for mesh adaptation in the framework of a simple model problem. The basic principles are introduced using a minimal amount of notations and techniques providing a complete overview for the non-specialist. Chapters 4-6 on the other hand are more advanced and present a posteriori error estimates within a general framework using the technical tools collected in Chapter 3. Most sections close with a bibliographical remark which indicates the historical development and hints at further results.

Convection-Diffusion Problems: An Introduction to Their Analysis and Numerical Solution

Convection-Diffusion Problems: An Introduction to Their Analysis and Numerical Solution PDF Author: Martin Stynes
Publisher: American Mathematical Soc.
ISBN: 1470448688
Category : Differential equations
Languages : en
Pages : 156

Book Description
Many physical problems involve diffusive and convective (transport) processes. When diffusion dominates convection, standard numerical methods work satisfactorily. But when convection dominates diffusion, the standard methods become unstable, and special techniques are needed to compute accurate numerical approximations of the unknown solution. This convection-dominated regime is the focus of the book. After discussing at length the nature of solutions to convection-dominated convection-diffusion problems, the authors motivate and design numerical methods that are particularly suited to this class of problems. At first they examine finite-difference methods for two-point boundary value problems, as their analysis requires little theoretical background. Upwinding, artificial diffusion, uniformly convergent methods, and Shishkin meshes are some of the topics presented. Throughout, the authors are concerned with the accuracy of solutions when the diffusion coefficient is close to zero. Later in the book they concentrate on finite element methods for problems posed in one and two dimensions. This lucid yet thorough account of convection-dominated convection-diffusion problems and how to solve them numerically is meant for beginning graduate students, and it includes a large number of exercises. An up-to-date bibliography provides the reader with further reading.

Mathematical Aspects of Discontinuous Galerkin Methods

Mathematical Aspects of Discontinuous Galerkin Methods PDF Author: Daniele Antonio Di Pietro
Publisher: Springer Science & Business Media
ISBN: 3642229808
Category : Mathematics
Languages : en
Pages : 392

Book Description
This book introduces the basic ideas to build discontinuous Galerkin methods and, at the same time, incorporates several recent mathematical developments. The presentation is to a large extent self-contained and is intended for graduate students and researchers in numerical analysis. The material covers a wide range of model problems, both steady and unsteady, elaborating from advection-reaction and diffusion problems up to the Navier-Stokes equations and Friedrichs' systems. Both finite element and finite volume viewpoints are exploited to convey the main ideas underlying the design of the approximation. The analysis is presented in a rigorous mathematical setting where discrete counterparts of the key properties of the continuous problem are identified. The framework encompasses fairly general meshes regarding element shapes and hanging nodes. Salient implementation issues are also addressed.

Finite Element Methods for Convection Dominated Flows

Finite Element Methods for Convection Dominated Flows PDF Author: American Society of Mechanical Engineers. Applied Mechanics Division
Publisher:
ISBN:
Category : Finite element method
Languages : en
Pages :

Book Description


Finite Volumes for Complex Applications VI Problems & Perspectives

Finite Volumes for Complex Applications VI Problems & Perspectives PDF Author: Jaroslav Fořt
Publisher: Springer Science & Business Media
ISBN: 3642206719
Category : Mathematics
Languages : en
Pages : 1003

Book Description
Finite volume methods are used for various applications in fluid dynamics, magnetohydrodynamics, structural analysis or nuclear physics. A closer look reveals many interesting phenomena and mathematical or numerical difficulties, such as true error analysis and adaptivity, modelling of multi-phase phenomena or fitting problems, stiff terms in convection/diffusion equations and sources. To overcome existing problems and to find solution methods for future applications requires many efforts and always new developments. The goal of The International Symposium on Finite Volumes for Complex Applications VI is to bring together mathematicians, physicists and engineers dealing with Finite Volume Techniques in a wide context. This book, divided in two volumes, brings a critical look at the subject (new ideas, limits or drawbacks of methods, theoretical as well as applied topics).