Robotic Manipulation with Compliant Shape Sensors PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Robotic Manipulation with Compliant Shape Sensors PDF full book. Access full book title Robotic Manipulation with Compliant Shape Sensors by Benjamin R. Peirce. Download full books in PDF and EPUB format.

Robotic Manipulation with Compliant Shape Sensors

Robotic Manipulation with Compliant Shape Sensors PDF Author: Benjamin R. Peirce
Publisher:
ISBN:
Category : Robotics
Languages : en
Pages : 246

Book Description


Robotic Manipulation with Compliant Shape Sensors

Robotic Manipulation with Compliant Shape Sensors PDF Author: Benjamin R. Peirce
Publisher:
ISBN:
Category : Robotics
Languages : en
Pages : 246

Book Description


Flexible Robotics

Flexible Robotics PDF Author: Mathieu Grossard
Publisher: John Wiley & Sons
ISBN: 1118572122
Category : Technology & Engineering
Languages : en
Pages : 290

Book Description
The objective of this book is to provide those interested in the field of flexible robotics with an overview of several scientific and technological advances in the practical field of robotic manipulation. The different chapters examine various stages that involve a number of robotic devices, particularly those designed for manipulation tasks characterized by mechanical flexibility. Chapter 1 deals with the general context surrounding the design of functionally integrated microgripping systems. Chapter 2 focuses on the dual notations of modal commandability and observability, which play a significant role in the control authority of vibratory modes that are significant for control issues. Chapter 3 presents different modeling tools that allow the simultaneous use of energy and system structuring notations. Chapter 4 discusses two sensorless methods that could be used for manipulation in confined or congested environments. Chapter 5 analyzes several appropriate approaches for responding to the specific needs required by versatile prehension tasks and dexterous manipulation. After a classification of compliant tactile sensors focusing on dexterous manipulation, Chapter 6 discusses the development of a complying triaxial force sensor based on piezoresistive technology. Chapter 7 deals with the constraints imposed by submicrometric precision in robotic manipulation. Chapter 8 presents the essential stages of the modeling, identification and analysis of control laws in the context of serial manipulator robots with flexible articulations. Chapter 9 provides an overview of models for deformable body manipulators. Finally, Chapter 10 presents a set of contributions that have been made with regard to the development of methodologies for identification and control of flexible manipulators based on experimental data. Contents 1. Design of Integrated Flexible Structures for Micromanipulation, Mathieu Grossard, Mehdi Boukallel, Stéphane Régnier and Nicolas Chaillet. 2. Flexible Structures’ Representation and Notable Properties in Control, Mathieu Grossard, Arnaud Hubert, Stéphane Régnier and Nicolas Chaillet. 3. Structured Energy Approach for the Modeling of Flexible Structures, Nandish R. Calchand, Arnaud Hubert, Yann Le Gorrec and Hector Ramirez Estay. 4. Open-Loop Control Approaches to Compliant Micromanipulators, Yassine Haddab, Vincent Chalvet and Micky Rakotondrabe. 5. Mechanical Flexibility and the Design of Versatile and Dexterous Grippers, Javier Martin Amezaga and Mathieu Grossard. 6. Flexible Tactile Sensors for Multidigital Dexterous In-hand Manipulation, Mehdi Boukallel, Hanna Yousef, Christelle Godin and Caroline Coutier. 7. Flexures for High-Precision Manipulation Robots, Reymond Clavel, Simon Henein and Murielle Richard. 8. Modeling and Motion Control of Serial Robots with Flexible Joints, Maria Makarov and Mathieu Grossard. 9. Dynamic Modeling of Deformable Manipulators, Frédéric Boyer and Ayman Belkhiri. 10. Robust Control of Robotic Manipulators with Structural Flexibilities, Houssem Halalchi, Loïc Cuvillon, Guillaume Mercère and Edouard Laroche. About the Authors Mathieu Grossard, CEA LIST, Gif-sur-Yvette, France. Nicolas Chaillet, FEMTO-ST, Besançon, France. Stéphane Régnier, ISIR, UPMC, Paris, France.

Robot Tactile Sensing

Robot Tactile Sensing PDF Author: R. Andrew Russell
Publisher:
ISBN:
Category : Computers
Languages : en
Pages : 192

Book Description
This work introduces tactile sensing for those engaged in advanced, sensor-based robotics, with special reference to problems of addressing arrays of sensor elements. It describes tactile sensors to register contact, surface profile, thermal properties and other tactile sensing modes. The use of robot manipulators to provide mobility for tactile sensors, and techniques for applying tactile sensing in robotic manipulation and recognition tasks are also covered. The various applications of this technology are discussed, and robot hands and grips are detailed.

Sensor Devices and Systems for Robotics

Sensor Devices and Systems for Robotics PDF Author: Alicia Casals
Publisher: Springer Science & Business Media
ISBN: 3642745679
Category : Computers
Languages : en
Pages : 356

Book Description
As robots improve in efficiency and intelligence, there is a growing need to develop more efficient, accurate and powerful sensors in accordance with the tasks to be robotized. This has led to a great increase in the study and development of different kinds of sensor devices and perception systems over the last ten years. Applications that differ from the industrial ones are often more demanding in sensorics since the environment is not usually so well structured. Spatial and agricultural applications are examples of situations where the environment is unknown or variable. Therefore, the work to be done by a robot cannot be strictly programmed and there must be an interactive communication with the environment. It cannot be denied that evolution and development in robotics are closely related to the advances made in sensorics. The first vision and force sensors utilizing discrete components resulted in a very low resolution and poor accuracy. However, progress in VLSI, imaging devices and other technologies have led to the development of more efficient sensor and perception systems which are able to supply the necessary data to robots.

Robotic Tactile Sensors for Changing Contact Conditions

Robotic Tactile Sensors for Changing Contact Conditions PDF Author: Tae Myung Huh
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
In recent years, robots have increasingly operated in a range of relatively unstructured environments, from outdoor agricultural operations to a cluttered kitchen in the home. As robots operate in these environments, they interact through continuously changing contact conditions between their hands and feet and the surfaces they touch. Toward allowing robots to respond to changing contact conditions, this thesis presents new tactile sensors for three particularly challenging scenarios: small running robots that need to sense changing contact conditions at their feet; grippers that employ gecko-inspired adhesion and need to sense how the adhesion is changing; and frictional grippers that use controlled sliding for manipulation. In each case, the sensing solution is informed by models of the contacts and how they can change. The first application focuses on leg-ground contacts for small running robots. Although legs are more complicated than wheels, legged robots are gradually growing in popularity due to their agility and versatility on various outdoor terrains. For best performance in terms of speed, efficiency and robust operation, legged robots should be equipped with sensors on their feet to monitor ground reaction forces and contact locations, so that they can account for how these affect running dynamics. However, it has been challenging to implement force sensors on the legs of small running robots because of the scale and geometry. To tackle this challenge, I developed a flexible capacitive force sensor array that measures distributed normal forces and a shear force. The sensor is mounted on the compliant C-shaped feet of a small hexapod robot and provides information about the ground reaction forces, contact locations, and overall gait smoothness and stability. Using the sensor information, I demonstrate two adaptive gait control methods that achieve improved running in terrain transitions and that reduce trajectory disturbances arising from obstacle contacts. Secondly, this thesis addresses robots that rely on adhesion, especially gecko-inspired adhesion. Grippers with astrictive force capabilities, such as suction or adhesion, adhere to an object surface even in with the negative grasp forces, allowing to them handle challenging objects such as large flat tiles and large curved objects that they cannot enclose. Among the various astrictive forces, gecko-inspired adhesion enjoys recent attention for its controllability: it is activated simply by applying a shear force and releases when the shear force is relaxed. However, measuring the adhesion is difficult because it depends on the area of contact formed by microscopic fibrillar structures and a surface. To tackle this challenge, I devised two direct contact area sensors for a gecko-adhesive gripper by using guided Lamb wave sensing and capacitive near-field proximity sensing. The former is relatively insensitive to the material of the adherend surface; the latter provides a high spatial resolution, which is useful for small grippers. In both approaches, I show that the sensor response matches the real contact area of the microscopic fibrillar structures sticking to a surface. Using these sensors, the robot can monitor contact area changes during a grasping process and evaluate the gripping quality before a failure occurs. Lastly, this thesis considers tactile sensing for in-hand manipulation with sliding. In this type of contact, multimodal sensors are necessary to simultaneously monitor steady force interactions and dynamic contact events. This information is useful both for stable gripping under varying load and for manipulation with respect to a hand. However, it has been challenging to build a compact multimodal sensor with a large taxel array that can be sampled rapidly for detecting directional dynamic events such as linear or rotational sliding. To address this challenge, I devised a capacitive nib array sensor that measures local stresses as well as directional sliding motions. The sensor rapidly samples the tactile array by dynamically clustering the sensing electrodes into groups that are selectively sensitive to certain types of directional sliding. Using this sensor, I demonstrate an in-hand sliding manipulation that measures changing sliding contacts and controls the grasp force to pivot an object lying on a table to an upright pose.

Robot Force Control

Robot Force Control PDF Author: Bruno Siciliano
Publisher: Springer Science & Business Media
ISBN: 1461544319
Category : Technology & Engineering
Languages : en
Pages : 154

Book Description
One of the fundamental requirements for the success of a robot task is the capability to handle interaction between manipulator and environment. The quantity that describes the state of interaction more effectively is the contact force at the manipulator's end effector. High values of contact force are generally undesirable since they may stress both the manipulator and the manipulated object; hence the need to seek for effective force control strategies. The book provides a theoretical and experimental treatment of robot interaction control. In the framework of model-based operational space control, stiffness control and impedance control are presented as the basic strategies for indirect force control; a key feature is the coverage of six-degree-of-freedom interaction tasks and manipulator kinematic redundancy. Then, direct force control strategies are presented which are obtained from motion control schemes suitably modified by the closure of an outer force regulation feedback loop. Finally, advanced force and position control strategies are presented which include passivity-based, adaptive and output feedback control schemes. Remarkably, all control schemes are experimentally tested on a setup consisting of a seven-joint industrial robot with open control architecture and force/torque sensor. The topic of robot force control is not treated in depth in robotics textbooks, in spite of its crucial importance for practical manipulation tasks. In the few books addressing this topic, the material is often limited to single-degree-of-freedom tasks. On the other hand, several results are available in the robotics literature but no dedicated monograph exists. The book is thus aimed at filling this gap by providing a theoretical and experimental treatment of robot force control.

Transferring Human Impedance Regulation Skills to Robots

Transferring Human Impedance Regulation Skills to Robots PDF Author: Arash Ajoudani
Publisher: Springer
ISBN: 3319242059
Category : Technology & Engineering
Languages : en
Pages : 180

Book Description
This book introduces novel thinking and techniques to the control of robotic manipulation. In particular, the concept of teleimpedance control as an alternative method to bilateral force-reflecting teleoperation control for robotic manipulation is introduced. In teleimpedance control, a compound reference command is sent to the slave robot including both the desired motion trajectory and impedance profile, which are then realized by the remote controller. This concept forms a basis for the development of the controllers for a robotic arm, a dual-arm setup, a synergy-driven robotic hand, and a compliant exoskeleton for improved interaction performance.

Intelligent Robotics and Applications

Intelligent Robotics and Applications PDF Author: Haibin Yu
Publisher: Springer
ISBN: 3030275353
Category : Computers
Languages : en
Pages : 743

Book Description
The volume set LNAI 11740 until LNAI 11745 constitutes the proceedings of the 12th International Conference on Intelligent Robotics and Applications, ICIRA 2019, held in Shenyang, China, in August 2019. The total of 378 full and 25 short papers presented in these proceedings was carefully reviewed and selected from 522 submissions. The papers are organized in topical sections as follows: Part I: collective and social robots; human biomechanics and human-centered robotics; robotics for cell manipulation and characterization; field robots; compliant mechanisms; robotic grasping and manipulation with incomplete information and strong disturbance; human-centered robotics; development of high-performance joint drive for robots; modular robots and other mechatronic systems; compliant manipulation learning and control for lightweight robot. Part II: power-assisted system and control; bio-inspired wall climbing robot; underwater acoustic and optical signal processing for environmental cognition; piezoelectric actuators and micro-nano manipulations; robot vision and scene understanding; visual and motional learning in robotics; signal processing and underwater bionic robots; soft locomotion robot; teleoperation robot; autonomous control of unmanned aircraft systems. Part III: marine bio-inspired robotics and soft robotics: materials, mechanisms, modelling, and control; robot intelligence technologies and system integration; continuum mechanisms and robots; unmanned underwater vehicles; intelligent robots for environment detection or fine manipulation; parallel robotics; human-robot collaboration; swarm intelligence and multi-robot cooperation; adaptive and learning control system; wearable and assistive devices and robots for healthcare; nonlinear systems and control. Part IV: swarm intelligence unmanned system; computational intelligence inspired robot navigation and SLAM; fuzzy modelling for automation, control, and robotics; development of ultra-thin-film, flexible sensors, and tactile sensation; robotic technology for deep space exploration; wearable sensing based limb motor function rehabilitation; pattern recognition and machine learning; navigation/localization. Part V: robot legged locomotion; advanced measurement and machine vision system; man-machine interactions; fault detection, testing and diagnosis; estimation and identification; mobile robots and intelligent autonomous systems; robotic vision, recognition and reconstruction; robot mechanism and design. Part VI: robot motion analysis and planning; robot design, development and control; medical robot; robot intelligence, learning and linguistics; motion control; computer integrated manufacturing; robot cooperation; virtual and augmented reality; education in mechatronics engineering; robotic drilling and sampling technology; automotive systems; mechatronics in energy systems; human-robot interaction.

Shape Sensing of Deformable Objects for Robot Manipulation

Shape Sensing of Deformable Objects for Robot Manipulation PDF Author: Jose Manuel Sanchez Loza
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description
Deformable objects are ubiquitous in our daily lives. On a given day, we manipulate clothes into uncountable configurations to dress ourselves, tie the shoelaces on our shoes, pick up fruits and vegetables without damaging them for our consumption and fold receipts into our wallets. All these tasks involve manipulating deformable objects and can be performed by an able person without any trouble, however robots have yet to reach the same level of dexterity. Unlike rigid objects, where robots are now capable of handling objects with close to human performance in some tasks; deformable objects must be controlled not only to account for their pose but also their shape. This extra constraint, to control an object's shape, renders techniques used for rigid objects mainly inapplicable to deformable objects. Furthermore, the behavior of deformable objects widely differs among them, e.g. the shape of a cable and clothes are significantly affected by gravity while it might not affect the configuration of other deformable objects such as food products. Thus, different approaches have been designed for specific classes of deformable objects.In this thesis we seek to address these shortcomings by proposing a modular approach to sense the shape of an object while it is manipulated by a robot. The modularity of the approach is inspired by a programming paradigm that has been increasingly been applied to software development in robotics and aims to achieve more general solutions by separating functionalities into components. These components can then be interchanged based on the specific task or object at hand. This provides a modular way to sense the shape of deformable objects.To validate the proposed pipeline, we implemented three different applications. Two applications focused exclusively on estimating the object's deformation using either tactile or force data, and the third application consisted in controlling the deformation of an object. An evaluation of the pipeline, performed on a set of elastic objects for all three applications, shows promising results for an approach that makes no use of visual information and hence, it could greatly be improved by the addition of this modality.

Wearable Technology for Robotic Manipulation and Learning

Wearable Technology for Robotic Manipulation and Learning PDF Author: Bin Fang
Publisher: Springer Nature
ISBN: 9811551243
Category : Technology & Engineering
Languages : en
Pages : 219

Book Description
Over the next few decades, millions of people, with varying backgrounds and levels of technical expertise, will have to effectively interact with robotic technologies on a daily basis. This means it will have to be possible to modify robot behavior without explicitly writing code, but instead via a small number of wearable devices or visual demonstrations. At the same time, robots will need to infer and predict humans’ intentions and internal objectives on the basis of past interactions in order to provide assistance before it is explicitly requested; this is the basis of imitation learning for robotics. This book introduces readers to robotic imitation learning based on human demonstration with wearable devices. It presents an advanced calibration method for wearable sensors and fusion approaches under the Kalman filter framework, as well as a novel wearable device for capturing gestures and other motions. Furthermore it describes the wearable-device-based and vision-based imitation learning method for robotic manipulation, making it a valuable reference guide for graduate students with a basic knowledge of machine learning, and for researchers interested in wearable computing and robotic learning.