Brain and Human Body Modeling PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Brain and Human Body Modeling PDF full book. Access full book title Brain and Human Body Modeling by Sergey Makarov. Download full books in PDF and EPUB format.

Brain and Human Body Modeling

Brain and Human Body Modeling PDF Author: Sergey Makarov
Publisher: Springer Nature
ISBN: 3030212939
Category : Technology & Engineering
Languages : en
Pages : 398

Book Description
This open access book describes modern applications of computational human modeling with specific emphasis in the areas of neurology and neuroelectromagnetics, depression and cancer treatments, radio-frequency studies and wireless communications. Special consideration is also given to the use of human modeling to the computational assessment of relevant regulatory and safety requirements. Readers working on applications that may expose human subjects to electromagnetic radiation will benefit from this book’s coverage of the latest developments in computational modelling and human phantom development to assess a given technology’s safety and efficacy in a timely manner. Describes construction and application of computational human models including anatomically detailed and subject specific models; Explains new practices in computational human modeling for neuroelectromagnetics, electromagnetic safety, and exposure evaluations; Includes a survey of modern applications for which computational human models are critical; Describes cellular-level interactions between the human body and electromagnetic fields.

Brain and Human Body Modeling

Brain and Human Body Modeling PDF Author: Sergey Makarov
Publisher: Springer Nature
ISBN: 3030212939
Category : Technology & Engineering
Languages : en
Pages : 398

Book Description
This open access book describes modern applications of computational human modeling with specific emphasis in the areas of neurology and neuroelectromagnetics, depression and cancer treatments, radio-frequency studies and wireless communications. Special consideration is also given to the use of human modeling to the computational assessment of relevant regulatory and safety requirements. Readers working on applications that may expose human subjects to electromagnetic radiation will benefit from this book’s coverage of the latest developments in computational modelling and human phantom development to assess a given technology’s safety and efficacy in a timely manner. Describes construction and application of computational human models including anatomically detailed and subject specific models; Explains new practices in computational human modeling for neuroelectromagnetics, electromagnetic safety, and exposure evaluations; Includes a survey of modern applications for which computational human models are critical; Describes cellular-level interactions between the human body and electromagnetic fields.

Brain and Human Body Modeling 2020

Brain and Human Body Modeling 2020 PDF Author: Sergey N. Makarov
Publisher: Springer Nature
ISBN: 3030456234
Category : Biomedical engineering
Languages : en
Pages : 395

Book Description
The 41st Annual International Conference of the IEEE EMBS, took place between July 23 and 27, 2019, in Berlin, Germany. The focus was on "Biomedical engineering ranging from wellness to intensive care." This conference provided an opportunity for researchers from academia and industry to discuss a variety of topics relevant to EMBS and hosted the 4th Annual Invited Session on Computational Human Models. At this session, a bevy of research related to the development of human phantoms was presented, together with a substantial variety of practical applications explored through simulation.

Antenna and Sensor Technologies in Modern Medical Applications

Antenna and Sensor Technologies in Modern Medical Applications PDF Author: Yahya Rahmat-Samii
Publisher: John Wiley & Sons
ISBN: 1119683297
Category : Technology & Engineering
Languages : en
Pages : 624

Book Description
A guide to the theory and recent development in the medical use of antenna technology Antenna and Sensor Technologies in Modern Medical Applications offers a comprehensive review of the theoretical background, design, and the latest developments in the application of antenna technology. Written by two experts in the field, the book presents the most recent research in the burgeoning field of wireless medical telemetry and sensing that covers both wearable and implantable antenna and sensor technologies. The authors review the integrated devices that include various types of sensors wired within a wearable garment that can be paired with external devices. The text covers important developments in sensor-integrated clothing that are synonymous with athletic apparel with built-in electronics. Information on implantable devices is also covered. The book explores technologies that utilize both inductive coupling and far field propagation. These include minimally invasive microwave ablation antennas, wireless targeted drug delivery, and much more. This important book: Covers recent developments in wireless medical telemetry Reviews the theory and design of in vitro/in vivo testing Explores emerging technologies in 2D and 3D printing of antenna/sensor fabrication Includes a chapter with an annotated list of the most comprehensive and important references in the field Written for students of engineering and antenna and sensor engineers, Antenna and Sensor Technologies in Modern Medical Applications is an essential guide to understanding human body interaction with antennas and sensors.

Safety and Biological Effects in MRI

Safety and Biological Effects in MRI PDF Author: Devashish Shrivastava
Publisher: John Wiley & Sons
ISBN: 1118821289
Category : Medical
Languages : en
Pages : 986

Book Description
In vivo magnetic resonance imaging (MRI) has evolved into a versatile and critical, if not ‘gold standard’, imaging tool with applications ranging from the physical sciences to the clinical ‘-ology’. In addition, there is a vast amount of accumulated but unpublished inside knowledge on what is needed to perform a safe, in vivo MRI. The goal of this comprehensive text, written by an outstanding group of world experts, is to present information about the effect of the MRI environment on the human body, and tools and methods to quantify such effects. By presenting such information all in one place, the expectation is that this book will help everyone interested in the Safety and Biological Effects in MRI find relevant information relatively quickly and know where we stand as a community. The information is expected to improve patient safety in the MR scanners of today, and facilitate developing faster, more powerful, yet safer MR scanners of tomorrow. This book is arranged in three sections. The first, named ‘Static and Gradient Fields’ (Chapters 1-9), presents the effects of static magnetic field and the gradients of magnetic field, in time and space, on the human body. The second section, named ‘Radiofrequency Fields’ (Chapters 10-30), presents ways to quantify radiofrequency (RF) field induced heating in patients undergoing MRI. The effect of the three fields of MRI environment (i.e. Static Magnetic Field, Time-varying Gradient Magnetic Field, and RF Field) on medical devices, that may be carried into the environment with patients, is also included. Finally, the third section, named ‘Engineering’ (chapters 31-35), presents the basic background engineering information regarding the equipment (i.e. superconducting magnets, gradient coils, and RF coils) that produce the Static Magnetic Field, Time-varying Gradient Magnetic Field, and RF Field. The book is intended for undergraduate and post-graduate students, engineers, physicists, biologists, clinicians, MR technologists, other healthcare professionals, and everyone else who might be interested in looking into the role of MRI environment on patient safety, as well as those just wishing to update their knowledge of the state of MRI safety. Those, who are learning about MRI or training in magnetic resonance in medicine, will find the book a useful compendium of the current state of the art of the field.

Essentials of MRI Safety

Essentials of MRI Safety PDF Author: Donald W. McRobbie
Publisher: John Wiley & Sons
ISBN: 1119557178
Category : Medical
Languages : en
Pages : 405

Book Description
Essentials of MRI Safety is a comprehensive guide that enables practitioners to recognise and assess safety risks and follow appropriate and effective safety procedures in clinical practice. The text covers all the vital aspects of clinical MRI safety, including the bio-effects of MRI, magnet safety, occupational exposure, scanning passive and active implants, MRI suite design, institutional governance, and more. Complex equations and models are stripped back to present the foundations of theory and physics necessary to understand each topic, from the basic laws of magnetism to fringe field spatial gradient maps of common MRI scanners. Written by an internationally recognised MRI author, educator, and MRI safety expert, this important textbook: Reflects the most current research, guidelines, and MRI safety information Explains procedures for scanning pregnant women, managing MRI noise exposure, and handling emergency situations Prepares candidates for the American Board of MR Safety exam and other professional certifications Aligns with MRI safety roles such as MR Medical Director (MRMD), MR Safety Officer (MRSO) and MR Safety Expert (MRSE) Contains numerous illustrations, figures, self-assessment tests, key references, and extensive appendices Essentials of MRI Safety is an indispensable text for all radiographers and radiologists, as well as physicists, engineers, and researchers with an interest in MRI.

Magnetic Resonance Procedures

Magnetic Resonance Procedures PDF Author: Frank G. Shellock
Publisher: CRC Press
ISBN: 1420041568
Category : Medical
Languages : en
Pages : 476

Book Description
Magnetic Resonance Procedures: Health Effects and Safety is the first authoritative text on MR procedures and its associated health and safety concerns written by noted radiologists, physicists, and scientists with expertise in the field. It contains both theoretical and practical information. This timely text discusses emergent issues rela

Proceedings of the International School on Magnetic Resonance and Brain Function - XII Workshop

Proceedings of the International School on Magnetic Resonance and Brain Function - XII Workshop PDF Author: Federico Giove
Publisher: Frontiers Media SA
ISBN: 2889455548
Category :
Languages : en
Pages : 150

Book Description
In the last thirty years, Magnetic Resonance has generated a wide revolution in biomedical research and in medical imaging in general. More recently, the "in vivo" studies of the human brain were extended by new original ways to the dynamic study of function and metabolism of the human brain. The enormous interest in expanding the investigation of the brain is emphasizing the search for new NMR methods capable of extracting information of so-far obscure aspects of the brain function. In fact, many quantitative approaches have been proposed in order to complement the information obtained by functional MRI, and several multimodal and multiparametric approaches have been developed to exploit the information, either functional or structural, made available by the flexible contrast generation typical of MRI, and to combine it with complementary information. The XII workshop of the International School on Magnetic Resonanceand Brain Function, held in Erice between 17 April and 6 May, 2016, was specially devoted to novel approaches aimed at better structural characterization of brain diseases, and at investigating frontiers MRI approaches to better understand the brain function. The papers included in this eBook offer a broad overview of the subjects covered during the Workshop, including applications of multiparametric MRI to neurological diseases, multimodal combination of MRI with electrophysiology, advanced methods for the investigation of brain networks and of brain physiology, and perspectives towards brain state reading.

Innovations in Modeling and Simulation to Advance Translational Science

Innovations in Modeling and Simulation to Advance Translational Science PDF Author: Melissa Knothe Tate
Publisher: Frontiers Media SA
ISBN: 288966225X
Category : Science
Languages : en
Pages : 191

Book Description
This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact.

Radiologic Guide to Orthopedic Devices

Radiologic Guide to Orthopedic Devices PDF Author: Tim B. Hunter
Publisher: Cambridge University Press
ISBN: 1107085624
Category : Medical
Languages : en
Pages : 357

Book Description
A comprehensive reference on radiologic appearance, uses and complications of orthopedic devices, for radiologists, orthopedists, physicians, and students.

Analysis of Metallic Shielding for Reduction of RF Induced Heating of Electrode During MRI for Active Implants

Analysis of Metallic Shielding for Reduction of RF Induced Heating of Electrode During MRI for Active Implants PDF Author: Krishna Singhal
Publisher: Krishna Singhal
ISBN:
Category : Medical
Languages : en
Pages : 186

Book Description
The options available to patients with implantable devices are limited. It is because there are multiple interactions between the MRI environment and the implantable medical devices. The three main components of MRI systems- static magnet, RF coil, and a gradient coil- interact with the implantable medical devices. These interactions can cause force, torque, device vibrations and RF-induced heating. Among all these potential hazards is the heating caused by the RF electromagnetic field. The lead wires of the implants can act as antennas and pick up the electric field generated by the RF coil. This results in the induced current traveling along the length of the device that will dissipate as heat where it is coupled to tissue. The combination of critically sensitive tissues and high heat makes this interaction the most significant risk for patient safety. Hence, there arises a need to design effective techniques that can minimize RF heating induced during an MRI. The technique of shielding has been proven to reduce RF-induced heating. The focus of current research is to provide analysis of shielding technique for reduction of RF-induced heating of electrodes during MRI. Shielded leads have been developed as a method to reduce RF-heating responsible for temperature rise at the electrodes. The purpose of this work is to provide a quantitative understanding of how a conducting metallic shield over a lead will reduce RF heating at the electrode during MRI scans. A physical model and equations for reduction of RF heating by a shielded lead are presented. Temperature rises are calculated for different lengths of shielded and unshielded leads. Confirming measurements are made for a quarter-wavelength coaxial cable model of the lead. Measured temperature rise and transfer function depended on terminations conditions, with the shorted lead exhibiting the temperature rise sixteen times less than an open-ended lead. The information provided by this work is expected to facilitate the development of lead wires with reduced RF-induced heating. The availability of lead wires with reduced heating will allow expanded access to MRI by patients with implantable devices.