Review of D-T Results from TFTR. PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Review of D-T Results from TFTR. PDF full book. Access full book title Review of D-T Results from TFTR. by Gregory Wayne Hammett. Download full books in PDF and EPUB format.

Review of D-T Results from TFTR.

Review of D-T Results from TFTR. PDF Author: Gregory Wayne Hammett
Publisher:
ISBN:
Category : Tokamak Fusion Test Reactor (Project).
Languages : en
Pages : 42

Book Description


Review of D-T Results from TFTR.

Review of D-T Results from TFTR. PDF Author: Gregory Wayne Hammett
Publisher:
ISBN:
Category : Tokamak Fusion Test Reactor (Project).
Languages : en
Pages : 42

Book Description


Overview of D-T Results from TFTR.

Overview of D-T Results from TFTR. PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 15

Book Description
Experiments with plasmas having nearly equal concentrations of deuterium and tritium have been carried out on TFTR. To date, the maximum fusion power has been 10.7 MW, using 39.5 MW of neutral-beam heating, in a supershot discharge and 6.7 MW in a high-[beta]{sub p} discharge following a current ramp-down. The fusion power density in the core of the plasma has reached 2.8 MWm−3, exceeding that expected in the International Thermonuclear Experimental Reactor (ITTER). The energy confinement time, [tau]{sub E}, is observed to increase in D-T, relative to D plasmas, by 20% and the n{sub i}(O)·[tau]{sub E} product by 55%. The improvement in thermal confinement is caused primarily by a decrease in ion heat conductivity in both supershot and limiter-H-mode discharges. Extensive lithium pellet injection increased the confinement time to 0.27 s and enabled higher current operation in both supershot and high-[beta]{sub p} discharges. First measurements of the confined alpha particles have been performed and found to be in good agreement with TRANSP simulations assuming classical confinement. Measurements of the alpha ash profile have been compared with simulations using particle transport coefficients from helium gas puffing experiments. The loss of energetic alpha particles to a detector at the bottom of the vessel is well described by the first-orbit loss mechanism. No loss due to alpha-particle-driven instabilities has yet been observed. ICRF heating of a D-T plasma, using the second harmonic of tritium, has been demonstrated. D-T experiments on TFTR will continue both to explore the physics underlying the ITER design and to examine some of the physics issues associated with an advanced tokamak reactor.

Review of Recent D-T Experiments from TFTR.

Review of Recent D-T Experiments from TFTR. PDF Author: H. G. Adler
Publisher:
ISBN:
Category : Tokamak Fusion Test Reactor (Project)
Languages : en
Pages : 22

Book Description


Review of Recent D-T Experiments from TFTR.

Review of Recent D-T Experiments from TFTR. PDF Author: R. J. Hawryluk
Publisher:
ISBN:
Category :
Languages : en
Pages : 2

Book Description


Review of Recent D-T Experiments from TFTR.

Review of Recent D-T Experiments from TFTR. PDF Author: H. G. Adler
Publisher:
ISBN:
Category : Tokamak Fusion Test Reactor (Project).
Languages : en
Pages : 2

Book Description


Recent D-T Results on TFTR.

Recent D-T Results on TFTR. PDF Author: D. W. Johnson
Publisher:
ISBN:
Category : Alpha rays
Languages : en
Pages : 19

Book Description


TFTR D-T Results

TFTR D-T Results PDF Author: Dale M. Meade
Publisher:
ISBN:
Category : Tokamak Fusion Test Reactor (Project).
Languages : en
Pages : 12

Book Description


Overview of D-T Results from TFTR.

Overview of D-T Results from TFTR. PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 15

Book Description
Experiments with plasmas having nearly equal concentrations of deuterium and tritium have been carried out on TFTR. To date, the maximum fusion power has been 10.7 MW, using 39.5 MW of neutral-beam heating, in a supershot discharge and 6.7 MW in a high-[beta]{sub p} discharge following a current ramp-down. The fusion power density in the core of the plasma has reached 2.8 MWm−3, exceeding that expected in the International Thermonuclear Experimental Reactor (ITTER). The energy confinement time, [tau]{sub E}, is observed to increase in D-T, relative to D plasmas, by 20% and the n{sub i}(O)·[tau]{sub E} product by 55%. The improvement in thermal confinement is caused primarily by a decrease in ion heat conductivity in both supershot and limiter-H-mode discharges. Extensive lithium pellet injection increased the confinement time to 0.27 s and enabled higher current operation in both supershot and high-[beta]{sub p} discharges. First measurements of the confined alpha particles have been performed and found to be in good agreement with TRANSP simulations assuming classical confinement. Measurements of the alpha ash profile have been compared with simulations using particle transport coefficients from helium gas puffing experiments. The loss of energetic alpha particles to a detector at the bottom of the vessel is well described by the first-orbit loss mechanism. No loss due to alpha-particle-driven instabilities has yet been observed. ICRF heating of a D-T plasma, using the second harmonic of tritium, has been demonstrated. D-T experiments on TFTR will continue both to explore the physics underlying the ITER design and to examine some of the physics issues associated with an advanced tokamak reactor.

Recent D-T Results on TFTR.

Recent D-T Results on TFTR. PDF Author: D. W. Johnson
Publisher:
ISBN:
Category : Alpha rays
Languages : en
Pages : 19

Book Description


Review of Diagnostic Methods for TFTR D-T Radiation Shielding and Neutronics Studies

Review of Diagnostic Methods for TFTR D-T Radiation Shielding and Neutronics Studies PDF Author: H. W. Kugel
Publisher:
ISBN:
Category : Radiation
Languages : en
Pages : 13

Book Description