Photoinduced Molecular Dynamics in Solution PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Photoinduced Molecular Dynamics in Solution PDF full book. Access full book title Photoinduced Molecular Dynamics in Solution by Gianluca Levi. Download full books in PDF and EPUB format.

Photoinduced Molecular Dynamics in Solution

Photoinduced Molecular Dynamics in Solution PDF Author: Gianluca Levi
Publisher: Springer Nature
ISBN: 3030286118
Category : Science
Languages : en
Pages : 226

Book Description
This book explores novel computational strategies for simulating excess energy dissipation alongside transient structural changes in photoexcited molecules, and accompanying solvent rearrangements. It also demonstrates in detail the synergy between theoretical modelling and ultrafast experiments in unravelling various aspects of the reaction dynamics of solvated photocatalytic metal complexes. Transition metal complexes play an important role as photocatalysts in solar energy conversion, and the rational design of metal-based photocatalytic systems with improved efficiency hinges on the fundamental understanding of the mechanisms behind light-induced chemical reactions in solution. Theory and atomistic modelling hold the key to uncovering these ultrafast processes. Linking atomistic simulations and modern X-ray scattering experiments with femtosecond time resolution, the book highlights previously unexplored dynamical changes in molecules, and discusses the development of theoretical and computational frameworks capable of interpreting the underlying ultrafast phenomena.

Photoinduced Molecular Dynamics in Solution

Photoinduced Molecular Dynamics in Solution PDF Author: Gianluca Levi
Publisher: Springer Nature
ISBN: 3030286118
Category : Science
Languages : en
Pages : 226

Book Description
This book explores novel computational strategies for simulating excess energy dissipation alongside transient structural changes in photoexcited molecules, and accompanying solvent rearrangements. It also demonstrates in detail the synergy between theoretical modelling and ultrafast experiments in unravelling various aspects of the reaction dynamics of solvated photocatalytic metal complexes. Transition metal complexes play an important role as photocatalysts in solar energy conversion, and the rational design of metal-based photocatalytic systems with improved efficiency hinges on the fundamental understanding of the mechanisms behind light-induced chemical reactions in solution. Theory and atomistic modelling hold the key to uncovering these ultrafast processes. Linking atomistic simulations and modern X-ray scattering experiments with femtosecond time resolution, the book highlights previously unexplored dynamical changes in molecules, and discusses the development of theoretical and computational frameworks capable of interpreting the underlying ultrafast phenomena.

X-Ray Free Electron Lasers

X-Ray Free Electron Lasers PDF Author: Uwe Bergman
Publisher: Royal Society of Chemistry
ISBN: 1849731004
Category : Science
Languages : en
Pages : 490

Book Description
Edited by pioneers in this exciting field, and featuring contributions from leading researchers, this book discusses the principles and applications of XFELs.

Photosynthetic Reaction Center

Photosynthetic Reaction Center PDF Author: Johann Deisenhofer
Publisher: Academic Press
ISBN: 1483288404
Category : Science
Languages : en
Pages : 593

Book Description
The availability of the photosynthetic reaction center's structure at an atomic resolution of less than three angstroms has revolutionized research. This protein is the first integral membrane protein whose structure has been determined with such precision. Each volume of the Photosynthetic Reaction Center contains original research, methods, and reviews. Together, these volumes cover our current understanding of how photosynthesis converts light energy into stored chemical energy.Volume II details the electron transfer process; it is oriented to the physical aspects of photosynthesis. It thus primarily discusses bacterial photosynthesis and model compounds. Volume II features the very complex and rapidly evolving issues associated with the theory of electron transfer in the bacterial reaction center, and explores picosecond and femtosecond spectroscopy. This volume also covers holeburning spectroscopy; primary events of bacterial photosynthesis with emphasis on the application of large, external electric fields designed to manipulate and probe mechanisms of the initial chemistry; the role of accessory carotenoid pigments; the techniques of infrared spectroscopy and magnetic resonance as applied to photosynthesis; and the interplay between natural and artificial photosynthesis.

Advances in Lasers and Electro Optics

Advances in Lasers and Electro Optics PDF Author: Nelson Costa
Publisher: BoD – Books on Demand
ISBN: 9533070889
Category : Science
Languages : en
Pages : 860

Book Description
Lasers and electro-optics is a field of research leading to constant breakthroughs. Indeed, tremendous advances have occurred in optical components and systems since the invention of laser in the late 50s, with applications in almost every imaginable field of science including control, astronomy, medicine, communications, measurements, etc. If we focus on lasers, for example, we find applications in quite different areas. We find lasers, for instance, in industry, emitting power level of several tens of kilowatts for welding and cutting; in medical applications, emitting power levels from few milliwatt to tens of Watt for various types of surgeries; and in optical fibre telecommunication systems, emitting power levels of the order of one milliwatt. This book is divided in four sections. The book presents several physical effects and properties of materials used in lasers and electro-optics in the first chapter and, in the three remaining chapters, applications of lasers and electro-optics in three different areas are presented

Nanoscale Photonic Imaging

Nanoscale Photonic Imaging PDF Author: Tim Salditt
Publisher: Springer Nature
ISBN: 3030344134
Category : Science
Languages : en
Pages : 634

Book Description
This open access book, edited and authored by a team of world-leading researchers, provides a broad overview of advanced photonic methods for nanoscale visualization, as well as describing a range of fascinating in-depth studies. Introductory chapters cover the most relevant physics and basic methods that young researchers need to master in order to work effectively in the field of nanoscale photonic imaging, from physical first principles, to instrumentation, to mathematical foundations of imaging and data analysis. Subsequent chapters demonstrate how these cutting edge methods are applied to a variety of systems, including complex fluids and biomolecular systems, for visualizing their structure and dynamics, in space and on timescales extending over many orders of magnitude down to the femtosecond range. Progress in nanoscale photonic imaging in Göttingen has been the sum total of more than a decade of work by a wide range of scientists and mathematicians across disciplines, working together in a vibrant collaboration of a kind rarely matched. This volume presents the highlights of their research achievements and serves as a record of the unique and remarkable constellation of contributors, as well as looking ahead at the future prospects in this field. It will serve not only as a useful reference for experienced researchers but also as a valuable point of entry for newcomers.

X-Ray Absorption and X-Ray Emission Spectroscopy

X-Ray Absorption and X-Ray Emission Spectroscopy PDF Author: Jeroen A. van Bokhoven
Publisher: John Wiley & Sons
ISBN: 1118844262
Category : Science
Languages : en
Pages : 896

Book Description
During the last two decades, remarkable and often spectacular progress has been made in the methodological and instrumental aspects of x–ray absorption and emission spectroscopy. This progress includes considerable technological improvements in the design and production of detectors especially with the development and expansion of large-scale synchrotron reactors All this has resulted in improved analytical performance and new applications, as well as in the perspective of a dramatic enhancement in the potential of x–ray based analysis techniques for the near future. This comprehensive two-volume treatise features articles that explain the phenomena and describe examples of X–ray absorption and emission applications in several fields, including chemistry, biochemistry, catalysis, amorphous and liquid systems, synchrotron radiation, and surface phenomena. Contributors explain the underlying theory, how to set up X–ray absorption experiments, and how to analyze the details of the resulting spectra. X-Ray Absorption and X-ray Emission Spectroscopy: Theory and Applications: Combines the theory, instrumentation and applications of x-ray absorption and emission spectroscopies which offer unique diagnostics to study almost any object in the Universe. Is the go-to reference book in the subject for all researchers across multi-disciplines since intense beams from modern sources have revolutionized x-ray science in recent years Is relevant to students, postdocurates and researchers working on x-rays and related synchrotron sources and applications in materials, physics, medicine, environment/geology, and biomedical materials

Scientific and Technical Aerospace Reports

Scientific and Technical Aerospace Reports PDF Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 702

Book Description


In-situ Materials Characterization

In-situ Materials Characterization PDF Author: Alexander Ziegler
Publisher: Springer Science & Business Media
ISBN: 3642451527
Category : Science
Languages : en
Pages : 265

Book Description
The behavior of nanoscale materials can change rapidly with time either because the environment changes rapidly or because the influence of the environment propagates quickly across the intrinsically small dimensions of nanoscale materials. Extremely fast time resolution studies using X-rays, electrons and neutrons are of very high interest to many researchers and is a fast-evolving and interesting field for the study of dynamic processes. Therefore, in situ structural characterization and measurements of structure-property relationships covering several decades of length and time scales (from atoms to millimeters and femtoseconds to hours) with high spatial and temporal resolutions are crucially important to understand the synthesis and behavior of multidimensional materials. The techniques described in this book will permit access to the real-time dynamics of materials, surface processes and chemical and biological reactions at various time scales. This book provides an interdisciplinary reference for research using in situ techniques to capture the real-time structural and property responses of materials to surrounding fields using electron, optical and x-ray microscopies (e.g. scanning, transmission and low-energy electron microscopy and scanning probe microscopy) or in the scattering realm with x-ray, neutron and electron diffraction.

Chemistry in Action: Making Molecular Movies with Ultrafast Electron Diffraction and Data Science

Chemistry in Action: Making Molecular Movies with Ultrafast Electron Diffraction and Data Science PDF Author: Lai Chung Liu
Publisher: Springer Nature
ISBN: 3030548511
Category : Science
Languages : en
Pages : 249

Book Description
The thesis provides the necessary experimental and analytical tools to unambiguously observe the atomically resolved chemical reactions. A great challenge of modern science has been to directly observe atomic motions during structural transitions, and while this was first achieved through a major advance in electron source brightness, the information content was still limited and new methods for image reconstruction using femtosecond electron diffraction methods were needed. One particular challenge lay in reconciling the innumerable possible nuclear configurations with the observation of chemical reaction mechanisms that reproducibly give the same kind of chemistry for large classes of molecules. The author shows that there is a simple solution that occurs during barrier crossing in which the highly anharmonic potential at that point in nuclear rearrangements couples high- and low-frequency vibrational modes to give highly localized nuclear motions, reducing hundreds of potential degrees of freedom to just a few key modes. Specific examples are given in this thesis, including two photoinduced phase transitions in an organic system, a ring closure reaction, and two direct observations of nuclear reorganization driven by spin transitions. The emerging field of structural dynamics promises to change the way we think about the physics of chemistry and this thesis provides tools to make it happen.

Photosystem II

Photosystem II PDF Author: T. Wydrzynski
Publisher: Springer Science & Business Media
ISBN: 140204254X
Category : Science
Languages : en
Pages : 786

Book Description
The most mysterious part of photosynthesis yet the most important for all aerobic life on Earth (including ourselves) is how green plants, algae and cyanobacteria make atmospheric oxygen from water. This thermodynamically difficult process is only achieved in Nature by the unique pigment/protein complex known as Photosystem II, using sunlight to power the reaction. The present volume contains 34 comprehensive chapters authored by 75 scientific experts from around the world. It gives an up-to-date account on all what is currently known about the molecular biology, biochemistry, biophysics and physiology of Photosystem II. The book is divided into several parts detailing the protein constituents, functional sites, tertiary structure, molecular dynamics, and mechanisms of homeostasis. The book ends with a comparison of Photosystem II with other related enzymes and bio-mimetic systems. Since the unique water-splitting chemistry catalyzed by Photosystem II leads to the production of pure oxygen gas and has the potential for making hydrogen gas, a primary goal of this book is to provide a molecular guide to future protein engineers and bio-mimetic chemists in the development of biocatalysts for the generation of clean, renewable energy from sunlight and water.