Author: Larry Lake
Publisher: Elsevier
ISBN: 0323143512
Category : Technology & Engineering
Languages : en
Pages : 680
Book Description
Reservoir Characterization is a collection of papers presented at the Reservoir Characterization Technical Conference, held at the Westin Hotel-Galleria in Dallas on April 29-May 1, 1985. Conference held April 29-May 1, 1985, at the Westin Hotel—Galleria in Dallas. The conference was sponsored by the National Institute for Petroleum and Energy Research, Bartlesville, Oklahoma. Reservoir characterization is a process for quantitatively assigning reservoir properties, recognizing geologic information and uncertainties in spatial variability. This book contains 19 chapters, and begins with the geological characterization of sandstone reservoir, followed by the geological prediction of shale distribution within the Prudhoe Bay field. The subsequent chapters are devoted to determination of reservoir properties, such as porosity, mineral occurrence, and permeability variation estimation. The discussion then shifts to the utility of a Bayesian-type formalism to delineate qualitative ""soft"" information and expert interpretation of reservoir description data. This topic is followed by papers concerning reservoir simulation, parameter assignment, and method of calculation of wetting phase relative permeability. This text also deals with the role of discontinuous vertical flow barriers in reservoir engineering. The last chapters focus on the effect of reservoir heterogeneity on oil reservoir. Petroleum engineers, scientists, and researchers will find this book of great value.
Reservoir Characterization
Author: Larry Lake
Publisher: Elsevier
ISBN: 0323143512
Category : Technology & Engineering
Languages : en
Pages : 680
Book Description
Reservoir Characterization is a collection of papers presented at the Reservoir Characterization Technical Conference, held at the Westin Hotel-Galleria in Dallas on April 29-May 1, 1985. Conference held April 29-May 1, 1985, at the Westin Hotel—Galleria in Dallas. The conference was sponsored by the National Institute for Petroleum and Energy Research, Bartlesville, Oklahoma. Reservoir characterization is a process for quantitatively assigning reservoir properties, recognizing geologic information and uncertainties in spatial variability. This book contains 19 chapters, and begins with the geological characterization of sandstone reservoir, followed by the geological prediction of shale distribution within the Prudhoe Bay field. The subsequent chapters are devoted to determination of reservoir properties, such as porosity, mineral occurrence, and permeability variation estimation. The discussion then shifts to the utility of a Bayesian-type formalism to delineate qualitative ""soft"" information and expert interpretation of reservoir description data. This topic is followed by papers concerning reservoir simulation, parameter assignment, and method of calculation of wetting phase relative permeability. This text also deals with the role of discontinuous vertical flow barriers in reservoir engineering. The last chapters focus on the effect of reservoir heterogeneity on oil reservoir. Petroleum engineers, scientists, and researchers will find this book of great value.
Publisher: Elsevier
ISBN: 0323143512
Category : Technology & Engineering
Languages : en
Pages : 680
Book Description
Reservoir Characterization is a collection of papers presented at the Reservoir Characterization Technical Conference, held at the Westin Hotel-Galleria in Dallas on April 29-May 1, 1985. Conference held April 29-May 1, 1985, at the Westin Hotel—Galleria in Dallas. The conference was sponsored by the National Institute for Petroleum and Energy Research, Bartlesville, Oklahoma. Reservoir characterization is a process for quantitatively assigning reservoir properties, recognizing geologic information and uncertainties in spatial variability. This book contains 19 chapters, and begins with the geological characterization of sandstone reservoir, followed by the geological prediction of shale distribution within the Prudhoe Bay field. The subsequent chapters are devoted to determination of reservoir properties, such as porosity, mineral occurrence, and permeability variation estimation. The discussion then shifts to the utility of a Bayesian-type formalism to delineate qualitative ""soft"" information and expert interpretation of reservoir description data. This topic is followed by papers concerning reservoir simulation, parameter assignment, and method of calculation of wetting phase relative permeability. This text also deals with the role of discontinuous vertical flow barriers in reservoir engineering. The last chapters focus on the effect of reservoir heterogeneity on oil reservoir. Petroleum engineers, scientists, and researchers will find this book of great value.
Uncertainty Analysis and Reservoir Modeling
Author: Y. Zee Ma
Publisher: AAPG
ISBN: 0891813780
Category : Science
Languages : en
Pages : 329
Book Description
Publisher: AAPG
ISBN: 0891813780
Category : Science
Languages : en
Pages : 329
Book Description
Seismic Reservoir Modeling
Author: Dario Grana
Publisher: John Wiley & Sons
ISBN: 1119086205
Category : Science
Languages : en
Pages : 256
Book Description
Seismic reservoir characterization aims to build 3-dimensional models of rock and fluid properties, including elastic and petrophysical variables, to describe and monitor the state of the subsurface for hydrocarbon exploration and production and for CO2 sequestration. Rock physics modeling and seismic wave propagation theory provide a set of physical equations to predict the seismic response of subsurface rocks based on their elastic and petrophysical properties. However, the rock and fluid properties are generally unknown and surface geophysical measurements are often the only available data to constrain reservoir models far away from well control. Therefore, reservoir properties are generally estimated from geophysical data as a solution of an inverse problem, by combining rock physics and seismic models with inverse theory and geostatistical methods, in the context of the geological modeling of the subsurface. A probabilistic approach to the inverse problem provides the probability distribution of rock and fluid properties given the measured geophysical data and allows quantifying the uncertainty of the predicted results. The reservoir characterization problem includes both discrete properties, such as facies or rock types, and continuous properties, such as porosity, mineral volumes, fluid saturations, seismic velocities and density. Seismic Reservoir Modeling: Theory, Examples and Algorithms presents the main concepts and methods of seismic reservoir characterization. The book presents an overview of rock physics models that link the petrophysical properties to the elastic properties in porous rocks and a review of the most common geostatistical methods to interpolate and simulate multiple realizations of subsurface properties conditioned on a limited number of direct and indirect measurements based on spatial correlation models. The core of the book focuses on Bayesian inverse methods for the prediction of elastic petrophysical properties from seismic data using analytical and numerical statistical methods. The authors present basic and advanced methodologies of the current state of the art in seismic reservoir characterization and illustrate them through expository examples as well as real data applications to hydrocarbon reservoirs and CO2 sequestration studies.
Publisher: John Wiley & Sons
ISBN: 1119086205
Category : Science
Languages : en
Pages : 256
Book Description
Seismic reservoir characterization aims to build 3-dimensional models of rock and fluid properties, including elastic and petrophysical variables, to describe and monitor the state of the subsurface for hydrocarbon exploration and production and for CO2 sequestration. Rock physics modeling and seismic wave propagation theory provide a set of physical equations to predict the seismic response of subsurface rocks based on their elastic and petrophysical properties. However, the rock and fluid properties are generally unknown and surface geophysical measurements are often the only available data to constrain reservoir models far away from well control. Therefore, reservoir properties are generally estimated from geophysical data as a solution of an inverse problem, by combining rock physics and seismic models with inverse theory and geostatistical methods, in the context of the geological modeling of the subsurface. A probabilistic approach to the inverse problem provides the probability distribution of rock and fluid properties given the measured geophysical data and allows quantifying the uncertainty of the predicted results. The reservoir characterization problem includes both discrete properties, such as facies or rock types, and continuous properties, such as porosity, mineral volumes, fluid saturations, seismic velocities and density. Seismic Reservoir Modeling: Theory, Examples and Algorithms presents the main concepts and methods of seismic reservoir characterization. The book presents an overview of rock physics models that link the petrophysical properties to the elastic properties in porous rocks and a review of the most common geostatistical methods to interpolate and simulate multiple realizations of subsurface properties conditioned on a limited number of direct and indirect measurements based on spatial correlation models. The core of the book focuses on Bayesian inverse methods for the prediction of elastic petrophysical properties from seismic data using analytical and numerical statistical methods. The authors present basic and advanced methodologies of the current state of the art in seismic reservoir characterization and illustrate them through expository examples as well as real data applications to hydrocarbon reservoirs and CO2 sequestration studies.
Practical Reservoir Engineering and Characterization
Author: Richard O. Baker
Publisher: Gulf Professional Publishing
ISBN: 0128018232
Category : Technology & Engineering
Languages : en
Pages : 535
Book Description
Practical Reservoir Characterization expertly explains key technologies, concepts, methods, and terminology in a way that allows readers in varying roles to appreciate the resulting interpretations and contribute to building reservoir characterization models that improve resource definition and recovery even in the most complex depositional environments. It is the perfect reference for senior reservoir engineers who want to increase their awareness of the latest in best practices, but is also ideal for team members who need to better understand their role in the characterization process. The text focuses on only the most critical areas, including modeling the reservoir unit, predicting well behavior, understanding past reservoir performance, and forecasting future reservoir performance. The text begins with an overview of the methods required for analyzing, characterizing, and developing real reservoirs, then explains the different methodologies and the types and sources of data required to characterize, forecast, and simulate a reservoir. - Thoroughly explains the data gathering methods required to characterize, forecast, and simulate a reservoir - Provides the fundamental background required to analyze, characterize, and develop real reservoirs in the most complex depositional environments - Presents a step-by-step approach for building a one, two, or three-dimensional representation of all reservoir types
Publisher: Gulf Professional Publishing
ISBN: 0128018232
Category : Technology & Engineering
Languages : en
Pages : 535
Book Description
Practical Reservoir Characterization expertly explains key technologies, concepts, methods, and terminology in a way that allows readers in varying roles to appreciate the resulting interpretations and contribute to building reservoir characterization models that improve resource definition and recovery even in the most complex depositional environments. It is the perfect reference for senior reservoir engineers who want to increase their awareness of the latest in best practices, but is also ideal for team members who need to better understand their role in the characterization process. The text focuses on only the most critical areas, including modeling the reservoir unit, predicting well behavior, understanding past reservoir performance, and forecasting future reservoir performance. The text begins with an overview of the methods required for analyzing, characterizing, and developing real reservoirs, then explains the different methodologies and the types and sources of data required to characterize, forecast, and simulate a reservoir. - Thoroughly explains the data gathering methods required to characterize, forecast, and simulate a reservoir - Provides the fundamental background required to analyze, characterize, and develop real reservoirs in the most complex depositional environments - Presents a step-by-step approach for building a one, two, or three-dimensional representation of all reservoir types
Quantitative Geosciences: Data Analytics, Geostatistics, Reservoir Characterization and Modeling
Author: Y. Z. Ma
Publisher: Springer
ISBN: 3030178609
Category : Technology & Engineering
Languages : en
Pages : 646
Book Description
Earth science is becoming increasingly quantitative in the digital age. Quantification of geoscience and engineering problems underpins many of the applications of big data and artificial intelligence. This book presents quantitative geosciences in three parts. Part 1 presents data analytics using probability, statistical and machine-learning methods. Part 2 covers reservoir characterization using several geoscience disciplines: including geology, geophysics, petrophysics and geostatistics. Part 3 treats reservoir modeling, resource evaluation and uncertainty analysis using integrated geoscience, engineering and geostatistical methods. As the petroleum industry is heading towards operating oil fields digitally, a multidisciplinary skillset is a must for geoscientists who need to use data analytics to resolve inconsistencies in various sources of data, model reservoir properties, evaluate uncertainties, and quantify risk for decision making. This book intends to serve as a bridge for advancing the multidisciplinary integration for digital fields. The goal is to move beyond using quantitative methods individually to an integrated descriptive-quantitative analysis. In big data, everything tells us something, but nothing tells us everything. This book emphasizes the integrated, multidisciplinary solutions for practical problems in resource evaluation and field development.
Publisher: Springer
ISBN: 3030178609
Category : Technology & Engineering
Languages : en
Pages : 646
Book Description
Earth science is becoming increasingly quantitative in the digital age. Quantification of geoscience and engineering problems underpins many of the applications of big data and artificial intelligence. This book presents quantitative geosciences in three parts. Part 1 presents data analytics using probability, statistical and machine-learning methods. Part 2 covers reservoir characterization using several geoscience disciplines: including geology, geophysics, petrophysics and geostatistics. Part 3 treats reservoir modeling, resource evaluation and uncertainty analysis using integrated geoscience, engineering and geostatistical methods. As the petroleum industry is heading towards operating oil fields digitally, a multidisciplinary skillset is a must for geoscientists who need to use data analytics to resolve inconsistencies in various sources of data, model reservoir properties, evaluate uncertainties, and quantify risk for decision making. This book intends to serve as a bridge for advancing the multidisciplinary integration for digital fields. The goal is to move beyond using quantitative methods individually to an integrated descriptive-quantitative analysis. In big data, everything tells us something, but nothing tells us everything. This book emphasizes the integrated, multidisciplinary solutions for practical problems in resource evaluation and field development.
Reservoir Modelling
Author: Steve Cannon
Publisher: John Wiley & Sons
ISBN: 1119313465
Category : Science
Languages : en
Pages : 328
Book Description
The essential resource to an integrated approach to reservoir modelling by highlighting both the input of data and the modelling results Reservoir Modelling offers a comprehensive guide to the procedures and workflow for building a 3-D model. Designed to be practical, the principles outlined can be applied to any modelling project regardless of the software used. The author — a noted practitioner in the field — captures the heterogeneity due to structure, stratigraphy and sedimentology that has an impact on flow in the reservoir. This essential guide follows a general workflow from data QC and project management, structural modelling, facies and property modelling to upscaling and the requirements for dynamic modelling. The author discusses structural elements of a model and reviews both seismic interpretation and depth conversion, which are known to contribute most to volumetric uncertainty and shows how large-scale stratigraphic relationships are integrated into the reservoir framework. The text puts the focus on geostatistical modelling of facies and heterogeneities that constrain the distribution of reservoir properties including porosity, permeability and water saturation. In addition, the author discusses the role of uncertainty analysis in the static model and its impact on volumetric estimation. The text also addresses some typical approaches to modelling specific reservoirs through a mix of case studies and illustrative examples and: Offers a practical guide to the use of data to build a successful reservoir model Draws on the latest advances in 3-D modelling software Reviews facies modelling, the different methods and the need for understanding the geological interpretation of cores and logs Presents information on upscaling both the structure and the properties of a fine-scale geological model for dynamic simulation Stresses the importance of an interdisciplinary team-based approach Written for geophysicists, reservoir geologists and petroleum engineers, Reservoir Modelling offers the essential information needed to understand a reservoir for modelling and contains the multidisciplinary nature of a reservoir modelling project.
Publisher: John Wiley & Sons
ISBN: 1119313465
Category : Science
Languages : en
Pages : 328
Book Description
The essential resource to an integrated approach to reservoir modelling by highlighting both the input of data and the modelling results Reservoir Modelling offers a comprehensive guide to the procedures and workflow for building a 3-D model. Designed to be practical, the principles outlined can be applied to any modelling project regardless of the software used. The author — a noted practitioner in the field — captures the heterogeneity due to structure, stratigraphy and sedimentology that has an impact on flow in the reservoir. This essential guide follows a general workflow from data QC and project management, structural modelling, facies and property modelling to upscaling and the requirements for dynamic modelling. The author discusses structural elements of a model and reviews both seismic interpretation and depth conversion, which are known to contribute most to volumetric uncertainty and shows how large-scale stratigraphic relationships are integrated into the reservoir framework. The text puts the focus on geostatistical modelling of facies and heterogeneities that constrain the distribution of reservoir properties including porosity, permeability and water saturation. In addition, the author discusses the role of uncertainty analysis in the static model and its impact on volumetric estimation. The text also addresses some typical approaches to modelling specific reservoirs through a mix of case studies and illustrative examples and: Offers a practical guide to the use of data to build a successful reservoir model Draws on the latest advances in 3-D modelling software Reviews facies modelling, the different methods and the need for understanding the geological interpretation of cores and logs Presents information on upscaling both the structure and the properties of a fine-scale geological model for dynamic simulation Stresses the importance of an interdisciplinary team-based approach Written for geophysicists, reservoir geologists and petroleum engineers, Reservoir Modelling offers the essential information needed to understand a reservoir for modelling and contains the multidisciplinary nature of a reservoir modelling project.
Carbonate Reservoir Characterization
Author: F. Jerry Lucia
Publisher: Springer Science & Business Media
ISBN: 3540727426
Category : Science
Languages : en
Pages : 342
Book Description
F. Jerry Lucia, working in America’s main oil-rich state, has produced a work that goes after one of the holy grails of oil prospecting. One main target in petroleum recovery is the description of the three-dimensional distribution of petrophysical properties on the interwell scale in carbonate reservoirs. Doing so would improve performance predictions by means of fluid-flow computer simulations. Lucia’s book focuses on the improvement of geological, petrophysical, and geostatistical methods, describes the basic petrophysical properties, important geology parameters, and rock fabrics from cores, and discusses their spatial distribution. A closing chapter deals with reservoir models as an input into flow simulators.
Publisher: Springer Science & Business Media
ISBN: 3540727426
Category : Science
Languages : en
Pages : 342
Book Description
F. Jerry Lucia, working in America’s main oil-rich state, has produced a work that goes after one of the holy grails of oil prospecting. One main target in petroleum recovery is the description of the three-dimensional distribution of petrophysical properties on the interwell scale in carbonate reservoirs. Doing so would improve performance predictions by means of fluid-flow computer simulations. Lucia’s book focuses on the improvement of geological, petrophysical, and geostatistical methods, describes the basic petrophysical properties, important geology parameters, and rock fabrics from cores, and discusses their spatial distribution. A closing chapter deals with reservoir models as an input into flow simulators.
Experimental Design in Petroleum Reservoir Studies
Author: Mohammad Jamshidnezhad
Publisher: Gulf Professional Publishing
ISBN: 0128030712
Category : Technology & Engineering
Languages : en
Pages : 187
Book Description
One of the main duties for reservoir engineers is reservoir study, which starts when a reservoir is explored and it continues until the reservoir abandonment. Reservoir study is a continual process and due to various reasons such as complexity at the surface and limited data, there are many uncertainties in reservoir modelling and characterization causing difficulties in reasonable history-matching and prediction phases of study. Experimental Design in Petroleum Reservoir Studies concentrates on experimental design, a trusted method in reservoir management, to analyze and take the guesswork out of the uncertainties surrounding the underdeveloped reservoir. Case studies from the Barnett shale and fractured reservoirs in the Middle East are just some of the practical examples included. Other relevant discussions on uncertainty in PVT, field performance data, and relevant outcomes of experimental design all help you gain insight into how better data can improve measurement tools, your model, and your reservoir assets. - Apply the practical knowledge and know-how now with real-world case studies included - Gain confidence in deviating uncertain parameters surrounding the underdeveloped reservoir with a focus on application of experimental design - Alleviate some of the guesswork in history-matching and prediction phrases with explanations on uncertainty analysis
Publisher: Gulf Professional Publishing
ISBN: 0128030712
Category : Technology & Engineering
Languages : en
Pages : 187
Book Description
One of the main duties for reservoir engineers is reservoir study, which starts when a reservoir is explored and it continues until the reservoir abandonment. Reservoir study is a continual process and due to various reasons such as complexity at the surface and limited data, there are many uncertainties in reservoir modelling and characterization causing difficulties in reasonable history-matching and prediction phases of study. Experimental Design in Petroleum Reservoir Studies concentrates on experimental design, a trusted method in reservoir management, to analyze and take the guesswork out of the uncertainties surrounding the underdeveloped reservoir. Case studies from the Barnett shale and fractured reservoirs in the Middle East are just some of the practical examples included. Other relevant discussions on uncertainty in PVT, field performance data, and relevant outcomes of experimental design all help you gain insight into how better data can improve measurement tools, your model, and your reservoir assets. - Apply the practical knowledge and know-how now with real-world case studies included - Gain confidence in deviating uncertain parameters surrounding the underdeveloped reservoir with a focus on application of experimental design - Alleviate some of the guesswork in history-matching and prediction phrases with explanations on uncertainty analysis
Shared Earth Modeling
Author: John R. Fanchi
Publisher: Gulf Professional Publishing
ISBN: 0750675225
Category : Business & Economics
Languages : en
Pages : 320
Book Description
Introduction to shared earth modeling -- Geology -- Petrophysics -- Well logging -- Geophysics -- Fluid properties -- Measures of rock-fluid interactions -- Applications of rock-fluid interactions -- Fluid flow equations -- Fundamentals of reservoir characterization -- Modern reservoir characterization Techniques -- Well testing -- Production analysis -- Reservoir flow simulation -- Reservoir management -- Improved recovery.
Publisher: Gulf Professional Publishing
ISBN: 0750675225
Category : Business & Economics
Languages : en
Pages : 320
Book Description
Introduction to shared earth modeling -- Geology -- Petrophysics -- Well logging -- Geophysics -- Fluid properties -- Measures of rock-fluid interactions -- Applications of rock-fluid interactions -- Fluid flow equations -- Fundamentals of reservoir characterization -- Modern reservoir characterization Techniques -- Well testing -- Production analysis -- Reservoir flow simulation -- Reservoir management -- Improved recovery.
Seismic Reservoir Characterization
Author: Philippe Doyen
Publisher:
ISBN:
Category : Geology
Languages : en
Pages : 260
Book Description
Publisher:
ISBN:
Category : Geology
Languages : en
Pages : 260
Book Description