Research and Trends in Data Mining Technologies and Applications PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Research and Trends in Data Mining Technologies and Applications PDF full book. Access full book title Research and Trends in Data Mining Technologies and Applications by Taniar, David. Download full books in PDF and EPUB format.

Research and Trends in Data Mining Technologies and Applications

Research and Trends in Data Mining Technologies and Applications PDF Author: Taniar, David
Publisher: IGI Global
ISBN: 1599042738
Category : Computers
Languages : en
Pages : 340

Book Description
Activities in data warehousing and mining are constantly emerging. Data mining methods, algorithms, online analytical processes, data mart and practical issues consistently evolve, providing a challenge for professionals in the field. Research and Trends in Data Mining Technologies and Applications focuses on the integration between the fields of data warehousing and data mining, with emphasis on the applicability to real-world problems. This book provides an international perspective, highlighting solutions to some of researchers' toughest challenges. Developments in the knowledge discovery process, data models, structures, and design serve as answers and solutions to these emerging challenges.

Research and Trends in Data Mining Technologies and Applications

Research and Trends in Data Mining Technologies and Applications PDF Author: Taniar, David
Publisher: IGI Global
ISBN: 1599042738
Category : Computers
Languages : en
Pages : 340

Book Description
Activities in data warehousing and mining are constantly emerging. Data mining methods, algorithms, online analytical processes, data mart and practical issues consistently evolve, providing a challenge for professionals in the field. Research and Trends in Data Mining Technologies and Applications focuses on the integration between the fields of data warehousing and data mining, with emphasis on the applicability to real-world problems. This book provides an international perspective, highlighting solutions to some of researchers' toughest challenges. Developments in the knowledge discovery process, data models, structures, and design serve as answers and solutions to these emerging challenges.

Educational Data Mining

Educational Data Mining PDF Author: Alejandro Peña-Ayala
Publisher: Springer
ISBN: 3319027387
Category : Technology & Engineering
Languages : en
Pages : 477

Book Description
This book is devoted to the Educational Data Mining arena. It highlights works that show relevant proposals, developments, and achievements that shape trends and inspire future research. After a rigorous revision process sixteen manuscripts were accepted and organized into four parts as follows: · Profile: The first part embraces three chapters oriented to: 1) describe the nature of educational data mining (EDM); 2) describe how to pre-process raw data to facilitate data mining (DM); 3) explain how EDM supports government policies to enhance education. · Student modeling: The second part contains five chapters concerned with: 4) explore the factors having an impact on the student's academic success; 5) detect student's personality and behaviors in an educational game; 6) predict students performance to adjust content and strategies; 7) identify students who will most benefit from tutor support; 8) hypothesize the student answer correctness based on eye metrics and mouse click. · Assessment: The third part has four chapters related to: 9) analyze the coherence of student research proposals; 10) automatically generate tests based on competences; 11) recognize students activities and visualize these activities for being presented to teachers; 12) find the most dependent test items in students response data. · Trends: The fourth part encompasses four chapters about how to: 13) mine text for assessing students productions and supporting teachers; 14) scan student comments by statistical and text mining techniques; 15) sketch a social network analysis (SNA) to discover student behavior profiles and depict models about their collaboration; 16) evaluate the structure of interactions between the students in social networks. This volume will be a source of interest to researchers, practitioners, professors, and postgraduate students aimed at updating their knowledge and find targets for future work in the field of educational data mining.

Evolving Application Domains of Data Warehousing and Mining

Evolving Application Domains of Data Warehousing and Mining PDF Author: Pedro Nuno San-Banto Furtado
Publisher: IGI Global Snippet
ISBN: 9781605668161
Category : Business & Economics
Languages : en
Pages : 345

Book Description
"This book provides insight into the latest findings concerning data warehousing, data mining, and their applications in everyday human activities"--Provided by publisher.

Introduction to Data Mining and its Applications

Introduction to Data Mining and its Applications PDF Author: S. Sumathi
Publisher: Springer
ISBN: 3540343512
Category : Computers
Languages : en
Pages : 836

Book Description
This book explores the concepts of data mining and data warehousing, a promising and flourishing frontier in database systems, and presents a broad, yet in-depth overview of the field of data mining. Data mining is a multidisciplinary field, drawing work from areas including database technology, artificial intelligence, machine learning, neural networks, statistics, pattern recognition, knowledge based systems, knowledge acquisition, information retrieval, high performance computing and data visualization.

Handbook of Statistical Analysis and Data Mining Applications

Handbook of Statistical Analysis and Data Mining Applications PDF Author: Ken Yale
Publisher: Elsevier
ISBN: 0124166458
Category : Mathematics
Languages : en
Pages : 824

Book Description
Handbook of Statistical Analysis and Data Mining Applications, Second Edition, is a comprehensive professional reference book that guides business analysts, scientists, engineers and researchers, both academic and industrial, through all stages of data analysis, model building and implementation. The handbook helps users discern technical and business problems, understand the strengths and weaknesses of modern data mining algorithms and employ the right statistical methods for practical application. This book is an ideal reference for users who want to address massive and complex datasets with novel statistical approaches and be able to objectively evaluate analyses and solutions. It has clear, intuitive explanations of the principles and tools for solving problems using modern analytic techniques and discusses their application to real problems in ways accessible and beneficial to practitioners across several areas—from science and engineering, to medicine, academia and commerce. - Includes input by practitioners for practitioners - Includes tutorials in numerous fields of study that provide step-by-step instruction on how to use supplied tools to build models - Contains practical advice from successful real-world implementations - Brings together, in a single resource, all the information a beginner needs to understand the tools and issues in data mining to build successful data mining solutions - Features clear, intuitive explanations of novel analytical tools and techniques, and their practical applications

Data Mining: Concepts and Techniques

Data Mining: Concepts and Techniques PDF Author: Jiawei Han
Publisher: Elsevier
ISBN: 0123814804
Category : Computers
Languages : en
Pages : 740

Book Description
Data Mining: Concepts and Techniques provides the concepts and techniques in processing gathered data or information, which will be used in various applications. Specifically, it explains data mining and the tools used in discovering knowledge from the collected data. This book is referred as the knowledge discovery from data (KDD). It focuses on the feasibility, usefulness, effectiveness, and scalability of techniques of large data sets. After describing data mining, this edition explains the methods of knowing, preprocessing, processing, and warehousing data. It then presents information about data warehouses, online analytical processing (OLAP), and data cube technology. Then, the methods involved in mining frequent patterns, associations, and correlations for large data sets are described. The book details the methods for data classification and introduces the concepts and methods for data clustering. The remaining chapters discuss the outlier detection and the trends, applications, and research frontiers in data mining. This book is intended for Computer Science students, application developers, business professionals, and researchers who seek information on data mining. - Presents dozens of algorithms and implementation examples, all in pseudo-code and suitable for use in real-world, large-scale data mining projects - Addresses advanced topics such as mining object-relational databases, spatial databases, multimedia databases, time-series databases, text databases, the World Wide Web, and applications in several fields - Provides a comprehensive, practical look at the concepts and techniques you need to get the most out of your data

Knowledge Discovery Practices and Emerging Applications of Data Mining: Trends and New Domains

Knowledge Discovery Practices and Emerging Applications of Data Mining: Trends and New Domains PDF Author: Kumar, A.V. Senthil
Publisher: IGI Global
ISBN: 160960069X
Category : Computers
Languages : en
Pages : 414

Book Description
Knowledge Discovery Practices and Emerging Applications of Data Mining: Trends and New Domains introduces the reader to recent research activities in the field of data mining. This book covers association mining, classification, mobile marketing, opinion mining, microarray data mining, internet mining and applications of data mining on biological data, telecommunication and distributed databases, among others, while promoting understanding and implementation of data mining techniques in emerging domains.

Applications of Data Mining in Computer Security

Applications of Data Mining in Computer Security PDF Author: Daniel Barbará
Publisher: Springer Science & Business Media
ISBN: 9781402070549
Category : Business & Economics
Languages : en
Pages : 286

Book Description
Data mining is becoming a pervasive technology in activities as diverse as using historical data to predict the success of a marketing campaign, looking for patterns in financial transactions to discover illegal activities or analyzing genome sequences. From this perspective, it was just a matter of time for the discipline to reach the important area of computer security. Applications Of Data Mining In Computer Security presents a collection of research efforts on the use of data mining in computer security. Applications Of Data Mining In Computer Security concentrates heavily on the use of data mining in the area of intrusion detection. The reason for this is twofold. First, the volume of data dealing with both network and host activity is so large that it makes it an ideal candidate for using data mining techniques. Second, intrusion detection is an extremely critical activity. This book also addresses the application of data mining to computer forensics. This is a crucial area that seeks to address the needs of law enforcement in analyzing the digital evidence.

Advanced Techniques in Knowledge Discovery and Data Mining

Advanced Techniques in Knowledge Discovery and Data Mining PDF Author: Nikhil Pal
Publisher: Springer
ISBN: 9781852338671
Category : Computers
Languages : en
Pages : 256

Book Description
Clear and concise explanations to understand the learning paradigms. Chapters written by leading world experts.

Data Mining Applications for Empowering Knowledge Societies

Data Mining Applications for Empowering Knowledge Societies PDF Author: Rahman, Hakikur
Publisher: IGI Global
ISBN: 1599046598
Category : Technology & Engineering
Languages : en
Pages : 356

Book Description
Presents an overview of the main issues of data mining, including its classification, regression, clustering, and ethical issues. Provides readers with knowledge enhancing processes as well as a wide spectrum of data mining applications.