Research and Development on Vanadium Alloys for Fusion Applications PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Research and Development on Vanadium Alloys for Fusion Applications PDF full book. Access full book title Research and Development on Vanadium Alloys for Fusion Applications by . Download full books in PDF and EPUB format.

Research and Development on Vanadium Alloys for Fusion Applications

Research and Development on Vanadium Alloys for Fusion Applications PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 126

Book Description
The current status of research and development on unirradiated and irradiated V-Cr-Ti alloys intended for fusion reactor structural applications is reviewed, with particular emphasis on the flow and fracture behavior of neutron-irradiated vanadium alloys. Recent progress on fabrication, joining, oxidation behavior, and the development of insulator coatings is also summarized. Fabrication of large (>500 kg) heats of V-4Cr-4Ti with properties similar to previous small laboratory heats has now been demonstrated. Impressive advances in the joining of thick sections of vanadium alloys using GTA and electron beam welds have been achieved in the past two years, although further improvements are still needed.

Research and Development on Vanadium Alloys for Fusion Applications

Research and Development on Vanadium Alloys for Fusion Applications PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 126

Book Description
The current status of research and development on unirradiated and irradiated V-Cr-Ti alloys intended for fusion reactor structural applications is reviewed, with particular emphasis on the flow and fracture behavior of neutron-irradiated vanadium alloys. Recent progress on fabrication, joining, oxidation behavior, and the development of insulator coatings is also summarized. Fabrication of large (>500 kg) heats of V-4Cr-4Ti with properties similar to previous small laboratory heats has now been demonstrated. Impressive advances in the joining of thick sections of vanadium alloys using GTA and electron beam welds have been achieved in the past two years, although further improvements are still needed.

Progress in Vanadium Alloy Development for Fusion Applications

Progress in Vanadium Alloy Development for Fusion Applications PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 20

Book Description
Vanadium alloys have been identified as a leading candidate low- activation structural mateiral for fusion first-wall blanket applications. Candidate vanadium alloys exhibit favorable safety and environmental characteristics, good fabricability, high temperature and heat load capability, good compatibility with liquid metals and resistance to irradiation damage. The focus of the vanadium alloy development program has been on the vanadium-chromium-titanium (0-15% Cr, 1-20% Ti) alloy system. Investigations include effects of minor alloy elements such as Si, Al, and Y and substitution of iron fro chromium in the ternary alloy. A V-4Cr-4Ti alloy is currently regarded as the reference alloy. Significant progress has been made in the development of vanadium alloys for fusion applications, Two production-scale heats (500 kg and 1200 kg) of the V-4Cr-4Ti alloys have been produced with controlled levels of impurities. The baseline properties of the 500 kg heat are similar to those of the previous laboratory-scale heats. Additional data have been obtained on baseline tensile and fracture properties. Results obtained on several heats with minor variations in composition indicate high uniform and total elongation of these alloys at temperatures of 400-600°C. The properties are not significantly different when modest amounts of helium are generated during neutron irradiation by the Dynamic Helium Charging Experiment methods. However, recent results have indicated that these alloys are susceptible to irradiation embrittlement at lower temperatures. Additional irradiation experiments are in progress to investigate these effects at temperatures of 200-400°C. This paper presents and update on the experimental results on candidate low activation vanadium alloys.

Vanadium-base Alloys for Fusion Reactor Applications

Vanadium-base Alloys for Fusion Reactor Applications PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Vanadium-base alloys offer potentially significant advantages over other candidate alloys as a structural material for fusion reactor first wall/blanket applications. Although the data base is more limited than that for the other leading candidate structural materials, viz., austenitic and ferritic steels, vanadium-base alloys exhibit several properties that make them particularly attractive for the fusion reactor environment. This paper presents a review of the structural material requirements, a summary of the materials data base for selected vanadium-base alloys, and a comparison of projected performance characteristics compared to other candidate alloys. Also, critical research and development (R and D) needs are defined.

Vanadium Alloys for the Radiative Divertor Program of DIII-D.

Vanadium Alloys for the Radiative Divertor Program of DIII-D. PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 6

Book Description
Vanadium alloys provide an attractive solution for fusion power plants as they exhibit a potential for low environmental impact due to low level of activation from neutron fluence and a relatively short half-life. They also have attractive material properties for use in a reactor. General Atomics along with Argonne National Laboratory (ANL) and Oak Ridge National Laboratory (ORNL), has developed a plan to utilize vanadium alloys as part of the Radiative Divertor Project (RDP) modification for the DIII-D tokamak. The goal for using vanadium alloys is to provide a meaningful step towards developing advanced materials for fusion power applications by demonstrating the in-service behavior of a vanadium alloy (V-4Cr-4Ti) in a tokamak in conjunction with developing essential fabrication technology for the manufacture of full-scale vanadium alloy components. A phased approach towards utilizing vanadium in DIII-D is being used starting with small coupons and samples, advancing to a small component, and finally a portion of the new double-null, slotted divertor will be fabricated from vanadium alloy product forms. A major portion of the program is research and development to support fabrication and resolve key issues related to environmental effects.

Structural Alloys for Nuclear Energy Applications

Structural Alloys for Nuclear Energy Applications PDF Author: Robert Odette
Publisher: Newnes
ISBN: 012397349X
Category : Technology & Engineering
Languages : en
Pages : 673

Book Description
High-performance alloys that can withstand operation in hazardous nuclear environments are critical to presentday in-service reactor support and maintenance and are foundational for reactor concepts of the future. With commercial nuclear energy vendors and operators facing the retirement of staff during the coming decades, much of the scholarly knowledge of nuclear materials pursuant to appropriate, impactful, and safe usage is at risk. Led by the multi-award winning editorial team of G. Robert Odette (UCSB) and Steven J. Zinkle (UTK/ORNL) and with contributions from leaders of each alloy discipline, Structural Alloys for Nuclear Energy Applications aids the next generation of researchers and industry staff developing and maintaining steels, nickel-base alloys, zirconium alloys, and other structural alloys in nuclear energy applications. This authoritative reference is a critical acquisition for institutions and individuals seeking state-of-the-art knowledge aided by the editors’ unique personal insight from decades of frontline research, engineering and management. Focuses on in-service irradiation, thermal, mechanical, and chemical performance capabilities. Covers the use of steels and other structural alloys in current fission technology, leading edge Generation-IV fission reactors, and future fusion power reactors. Provides a critical and comprehensive review of the state-of-the-art experimental knowledge base of reactor materials, for applications ranging from engineering safety and lifetime assessments to supporting the development of advanced computational models.

Development of Vanadium Base Alloys for Fusion First-wall

Development of Vanadium Base Alloys for Fusion First-wall PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 41

Book Description
Vanadium alloys have been identified as a leading candidate material for fusion first-wall/blanket applications. Certain vanadium alloys exhibit favorable safety and environmental characteristics, good fabricability, high temperature and heat load capability, good compatibility with liquid metals and resistance to irradiation damage effects. The current focus is on vanadium alloys with (3-5)% Cr and (3-5)% Ti with a V-4Cr-4Ti alloy as the leading candidate. Preliminary results indicate that the crack-growth rates of certain alloys are not highly sensitive to irradiation. Results from the Dynamic Helium Charging Experiment (DHCE) which simulates fusion relevant helium/dpa ratios are similar to results from neutron irradiated material. This paper presents an overview of the recent results on the development of vanadium alloys for fusion first wall/blanket applications.

Status of Vanadium Alloy Development for Fusion First Wall/ Blanket Applications

Status of Vanadium Alloy Development for Fusion First Wall/ Blanket Applications PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 17

Book Description


Utilization of Vanadium Alloys in the DIII-D Radiative Divertor Program

Utilization of Vanadium Alloys in the DIII-D Radiative Divertor Program PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 16

Book Description
Vanadium alloys are attractive candidate structural materials for fusion power plants because of their potential for minimum environmental impact due to low neutron activation and rapid activation decay. They also possess favorable material properties for operation in a fusion environment. General Atomics (GA), in conjunction with Argonne National Laboratory (ANL) and Oak Ridge National Laboratory (ORNL), has developed a plan for the utilization of vanadium alloys as part of the Radiative Divertor (RD) upgrade for the DIII-D tokamak. The plan will be carried out in conjunction with General Atomics and the Materials Program of the US Department of Energy (DOE). This application of a vanadium alloy will provide a meaningful step in the development of advanced materials for fusion power devices by: (1) developing necessary materials processing technology for the fabrication of large vanadium alloy components, and (2) demonstrating the in-service behavior of a vanadium alloy (V-4Cr-4Ti) in a tokamak environment. The program consists of three phases: first, small vanadium alloy coupon samples will be exposed in DIII-D at positions in the vessel floor and within the pumping plenum region of the existing divertor structure; second, a small vanadium alloy component will be installed in the existing divertor, and third, during the forthcoming Radiative Divertor modification, scheduled for completion in mid-1997, the upper section of the new double-null, slotted divertor will be fabricated from vanadium alloy product forms. This program also includes research and development (R and D) efforts to support fabrication development and to resolve key issues related to environmental effects.

Vanadium Alloys for Structural Applications in Fusion Systems

Vanadium Alloys for Structural Applications in Fusion Systems PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 21

Book Description


Reference Vanadium Alloy V-4Cr-4Ti for Fusion Application

Reference Vanadium Alloy V-4Cr-4Ti for Fusion Application PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 20

Book Description
Vanadium alloys exhibit important advantages as a candidate structural material for fusion first-wall/blanket applications. These advantages include high temperature and high wall load capability, favorable safety and environmental features, resistance to irradiation damage, and alloys of interest are readily fabricable. A substantial data base has been developed on laboratory-scale heats of V-Ti, V-Cr-Ti and V-Ti-Si alloys before and after irradiation. Investigations in recent years have focused primarily on compositions of V-(0--15)Cr-(0--20)Ti (0--1)Si. Results from these investigations have provided a basis for identifying a V-4Cr-4Ti alloy as the US reference vanadium alloy for further development. Major results obtained on one production-scale heat and three laboratory heats with compositions of V-(4--5)Cr-(4--5)Ti are presented in this paper. Properties measured were input properties, tensile properties, creep, and radiation effects.