Author: Alexei Borodin
Publisher: Cambridge University Press
ISBN: 1107175550
Category : Mathematics
Languages : en
Pages : 169
Book Description
An introduction to the modern representation theory of big groups, exploring its connections to probability and algebraic combinatorics.
Representations of the Infinite Symmetric Group
Author: Alexei Borodin
Publisher: Cambridge University Press
ISBN: 1107175550
Category : Mathematics
Languages : en
Pages : 169
Book Description
An introduction to the modern representation theory of big groups, exploring its connections to probability and algebraic combinatorics.
Publisher: Cambridge University Press
ISBN: 1107175550
Category : Mathematics
Languages : en
Pages : 169
Book Description
An introduction to the modern representation theory of big groups, exploring its connections to probability and algebraic combinatorics.
Asimptoti?eskaja teorija predstavlenija simmetri?eskoj gruppyi ee primenenija v analize
Author: Sergei Vasilʹevich Kerov
Publisher: American Mathematical Soc.
ISBN: 9780821889633
Category : Mathematics
Languages : en
Pages : 224
Book Description
This book reproduces the doctoral thesis written by a remarkable mathematician, Sergei V. Kerov. His untimely death at age 54 left the mathematical community with an extensive body of work and this one-of-a-kind monograph. Here, he gives a clear and lucid account of results and methods of asymptotic representation theory. The book is a unique source of information on an important topic of current research. Asymptotic representation theory of symmetric groups deals with problems of two types: asymptotic properties of representations of symmetric groups of large order and representations of the limiting object, i.e., the infinite symmetric group. The author contributed significantly in the development of both directions. His book presents an account of these contributions, as well as those of other researchers. Among the problems of the first type, the author discusses the properties of the distribution of the normalized cycle length in a random permutation and the limiting shape of a random (with respect to the Plancherel measure) Young diagram. He also studies stochastic properties of the deviations of random diagrams from the limiting curve. Among the problems of the second type, Kerov studies an important problem of computing irreducible characters of the infinite symmetric group. This leads to the study of a continuous analog of the notion of Young diagram, and in particular, to a continuous analogue of the hook walk algorithm, which is well known in the combinatorics of finite Young diagrams. In turn, this construction provides a completely new description of the relation between the classical moment problems of Hausdorff and Markov. The book is suitable for graduate students and research mathematicians interested in representation theory and combinatorics.
Publisher: American Mathematical Soc.
ISBN: 9780821889633
Category : Mathematics
Languages : en
Pages : 224
Book Description
This book reproduces the doctoral thesis written by a remarkable mathematician, Sergei V. Kerov. His untimely death at age 54 left the mathematical community with an extensive body of work and this one-of-a-kind monograph. Here, he gives a clear and lucid account of results and methods of asymptotic representation theory. The book is a unique source of information on an important topic of current research. Asymptotic representation theory of symmetric groups deals with problems of two types: asymptotic properties of representations of symmetric groups of large order and representations of the limiting object, i.e., the infinite symmetric group. The author contributed significantly in the development of both directions. His book presents an account of these contributions, as well as those of other researchers. Among the problems of the first type, the author discusses the properties of the distribution of the normalized cycle length in a random permutation and the limiting shape of a random (with respect to the Plancherel measure) Young diagram. He also studies stochastic properties of the deviations of random diagrams from the limiting curve. Among the problems of the second type, Kerov studies an important problem of computing irreducible characters of the infinite symmetric group. This leads to the study of a continuous analog of the notion of Young diagram, and in particular, to a continuous analogue of the hook walk algorithm, which is well known in the combinatorics of finite Young diagrams. In turn, this construction provides a completely new description of the relation between the classical moment problems of Hausdorff and Markov. The book is suitable for graduate students and research mathematicians interested in representation theory and combinatorics.
Permutation Groups
Author: John D. Dixon
Publisher: Springer Science & Business Media
ISBN: 1461207312
Category : Mathematics
Languages : en
Pages : 360
Book Description
Following the basic ideas, standard constructions and important examples in the theory of permutation groups, the book goes on to develop the combinatorial and group theoretic structure of primitive groups leading to the proof of the pivotal ONan-Scott Theorem which links finite primitive groups with finite simple groups. Special topics covered include the Mathieu groups, multiply transitive groups, and recent work on the subgroups of the infinite symmetric groups. With its many exercises and detailed references to the current literature, this text can serve as an introduction to permutation groups in a course at the graduate or advanced undergraduate level, as well as for self-study.
Publisher: Springer Science & Business Media
ISBN: 1461207312
Category : Mathematics
Languages : en
Pages : 360
Book Description
Following the basic ideas, standard constructions and important examples in the theory of permutation groups, the book goes on to develop the combinatorial and group theoretic structure of primitive groups leading to the proof of the pivotal ONan-Scott Theorem which links finite primitive groups with finite simple groups. Special topics covered include the Mathieu groups, multiply transitive groups, and recent work on the subgroups of the infinite symmetric groups. With its many exercises and detailed references to the current literature, this text can serve as an introduction to permutation groups in a course at the graduate or advanced undergraduate level, as well as for self-study.
A Course in Finite Group Representation Theory
Author: Peter Webb
Publisher: Cambridge University Press
ISBN: 1107162394
Category : Mathematics
Languages : en
Pages : 339
Book Description
This graduate-level text provides a thorough grounding in the representation theory of finite groups over fields and rings. The book provides a balanced and comprehensive account of the subject, detailing the methods needed to analyze representations that arise in many areas of mathematics. Key topics include the construction and use of character tables, the role of induction and restriction, projective and simple modules for group algebras, indecomposable representations, Brauer characters, and block theory. This classroom-tested text provides motivation through a large number of worked examples, with exercises at the end of each chapter that test the reader's knowledge, provide further examples and practice, and include results not proven in the text. Prerequisites include a graduate course in abstract algebra, and familiarity with the properties of groups, rings, field extensions, and linear algebra.
Publisher: Cambridge University Press
ISBN: 1107162394
Category : Mathematics
Languages : en
Pages : 339
Book Description
This graduate-level text provides a thorough grounding in the representation theory of finite groups over fields and rings. The book provides a balanced and comprehensive account of the subject, detailing the methods needed to analyze representations that arise in many areas of mathematics. Key topics include the construction and use of character tables, the role of induction and restriction, projective and simple modules for group algebras, indecomposable representations, Brauer characters, and block theory. This classroom-tested text provides motivation through a large number of worked examples, with exercises at the end of each chapter that test the reader's knowledge, provide further examples and practice, and include results not proven in the text. Prerequisites include a graduate course in abstract algebra, and familiarity with the properties of groups, rings, field extensions, and linear algebra.
Representation Theory of Finite Groups
Author: Benjamin Steinberg
Publisher: Springer Science & Business Media
ISBN: 1461407761
Category : Mathematics
Languages : en
Pages : 166
Book Description
This book is intended to present group representation theory at a level accessible to mature undergraduate students and beginning graduate students. This is achieved by mainly keeping the required background to the level of undergraduate linear algebra, group theory and very basic ring theory. Module theory and Wedderburn theory, as well as tensor products, are deliberately avoided. Instead, we take an approach based on discrete Fourier Analysis. Applications to the spectral theory of graphs are given to help the student appreciate the usefulness of the subject. A number of exercises are included. This book is intended for a 3rd/4th undergraduate course or an introductory graduate course on group representation theory. However, it can also be used as a reference for workers in all areas of mathematics and statistics.
Publisher: Springer Science & Business Media
ISBN: 1461407761
Category : Mathematics
Languages : en
Pages : 166
Book Description
This book is intended to present group representation theory at a level accessible to mature undergraduate students and beginning graduate students. This is achieved by mainly keeping the required background to the level of undergraduate linear algebra, group theory and very basic ring theory. Module theory and Wedderburn theory, as well as tensor products, are deliberately avoided. Instead, we take an approach based on discrete Fourier Analysis. Applications to the spectral theory of graphs are given to help the student appreciate the usefulness of the subject. A number of exercises are included. This book is intended for a 3rd/4th undergraduate course or an introductory graduate course on group representation theory. However, it can also be used as a reference for workers in all areas of mathematics and statistics.
Representation Theory of Symmetric Groups
Author: Pierre-Loic Meliot
Publisher: CRC Press
ISBN: 1498719139
Category : Mathematics
Languages : en
Pages : 666
Book Description
Representation Theory of Symmetric Groups is the most up-to-date abstract algebra book on the subject of symmetric groups and representation theory. Utilizing new research and results, this book can be studied from a combinatorial, algorithmic or algebraic viewpoint. This book is an excellent way of introducing today’s students to representation theory of the symmetric groups, namely classical theory. From there, the book explains how the theory can be extended to other related combinatorial algebras like the Iwahori-Hecke algebra. In a clear and concise manner, the author presents the case that most calculations on symmetric group can be performed by utilizing appropriate algebras of functions. Thus, the book explains how some Hopf algebras (symmetric functions and generalizations) can be used to encode most of the combinatorial properties of the representations of symmetric groups. Overall, the book is an innovative introduction to representation theory of symmetric groups for graduate students and researchers seeking new ways of thought.
Publisher: CRC Press
ISBN: 1498719139
Category : Mathematics
Languages : en
Pages : 666
Book Description
Representation Theory of Symmetric Groups is the most up-to-date abstract algebra book on the subject of symmetric groups and representation theory. Utilizing new research and results, this book can be studied from a combinatorial, algorithmic or algebraic viewpoint. This book is an excellent way of introducing today’s students to representation theory of the symmetric groups, namely classical theory. From there, the book explains how the theory can be extended to other related combinatorial algebras like the Iwahori-Hecke algebra. In a clear and concise manner, the author presents the case that most calculations on symmetric group can be performed by utilizing appropriate algebras of functions. Thus, the book explains how some Hopf algebras (symmetric functions and generalizations) can be used to encode most of the combinatorial properties of the representations of symmetric groups. Overall, the book is an innovative introduction to representation theory of symmetric groups for graduate students and researchers seeking new ways of thought.
Infinite Dimensional Harmonic Analysis Iii - Proceedings Of The Third German-japanese Symposium
Author: Kimiaki Saito
Publisher: World Scientific
ISBN: 9814478997
Category : Mathematics
Languages : en
Pages : 366
Book Description
This volume contains contributions on recent results in infinite dimensional harmonic analysis and its applications to probability theory. Some papers deal with purely analytic topics such as Frobenius reciprocity, diffeomorphism groups, equivariant fibrations and Harish-Chandra modules. Several other papers touch upon stochastic processes, in particular Lévy processes. The majority of the contributions emphasize on the algebraic-topological aspects of the theory by choosing configuration spaces, locally compact groups and hypergroups as their basic structures. The volume provides a useful survey of innovative work pertaining to a highly actual section of modern analysis in its pure and applied shapings.
Publisher: World Scientific
ISBN: 9814478997
Category : Mathematics
Languages : en
Pages : 366
Book Description
This volume contains contributions on recent results in infinite dimensional harmonic analysis and its applications to probability theory. Some papers deal with purely analytic topics such as Frobenius reciprocity, diffeomorphism groups, equivariant fibrations and Harish-Chandra modules. Several other papers touch upon stochastic processes, in particular Lévy processes. The majority of the contributions emphasize on the algebraic-topological aspects of the theory by choosing configuration spaces, locally compact groups and hypergroups as their basic structures. The volume provides a useful survey of innovative work pertaining to a highly actual section of modern analysis in its pure and applied shapings.
A Journey Through Representation Theory
Author: Caroline Gruson
Publisher: Springer
ISBN: 3319982710
Category : Mathematics
Languages : en
Pages : 231
Book Description
This text covers a variety of topics in representation theory and is intended for graduate students and more advanced researchers who are interested in the field. The book begins with classical representation theory of finite groups over complex numbers and ends with results on representation theory of quivers. The text includes in particular infinite-dimensional unitary representations for abelian groups, Heisenberg groups and SL(2), and representation theory of finite-dimensional algebras. The last chapter is devoted to some applications of quivers, including Harish-Chandra modules for SL(2). Ample examples are provided and some are revisited with a different approach when new methods are introduced, leading to deeper results. Exercises are spread throughout each chapter. Prerequisites include an advanced course in linear algebra that covers Jordan normal forms and tensor products as well as basic results on groups and rings.
Publisher: Springer
ISBN: 3319982710
Category : Mathematics
Languages : en
Pages : 231
Book Description
This text covers a variety of topics in representation theory and is intended for graduate students and more advanced researchers who are interested in the field. The book begins with classical representation theory of finite groups over complex numbers and ends with results on representation theory of quivers. The text includes in particular infinite-dimensional unitary representations for abelian groups, Heisenberg groups and SL(2), and representation theory of finite-dimensional algebras. The last chapter is devoted to some applications of quivers, including Harish-Chandra modules for SL(2). Ample examples are provided and some are revisited with a different approach when new methods are introduced, leading to deeper results. Exercises are spread throughout each chapter. Prerequisites include an advanced course in linear algebra that covers Jordan normal forms and tensor products as well as basic results on groups and rings.
Categories of Symmetries and Infinite-dimensional Groups
Author: Yu. A. Neretin
Publisher: Oxford University Press
ISBN: 9780198511861
Category : Language Arts & Disciplines
Languages : en
Pages : 436
Book Description
There are many types of infinite-dimensional groups, most of which have been studied separately from each other since the 1950s. It is now possible to fit these apparently disparate groups into one coherent picture. With the first explicit construction of hidden structures (mantles and trains), Neretin is able to show how many infinite-dimensional groups are in fact only a small part of a much larger object, analogous to the way real numbers are embedded within complex numbers.
Publisher: Oxford University Press
ISBN: 9780198511861
Category : Language Arts & Disciplines
Languages : en
Pages : 436
Book Description
There are many types of infinite-dimensional groups, most of which have been studied separately from each other since the 1950s. It is now possible to fit these apparently disparate groups into one coherent picture. With the first explicit construction of hidden structures (mantles and trains), Neretin is able to show how many infinite-dimensional groups are in fact only a small part of a much larger object, analogous to the way real numbers are embedded within complex numbers.
Introduction to Representation Theory
Author: Pavel I. Etingof
Publisher: American Mathematical Soc.
ISBN: 0821853511
Category : Mathematics
Languages : en
Pages : 240
Book Description
Very roughly speaking, representation theory studies symmetry in linear spaces. It is a beautiful mathematical subject which has many applications, ranging from number theory and combinatorics to geometry, probability theory, quantum mechanics, and quantum field theory. The goal of this book is to give a ``holistic'' introduction to representation theory, presenting it as a unified subject which studies representations of associative algebras and treating the representation theories of groups, Lie algebras, and quivers as special cases. Using this approach, the book covers a number of standard topics in the representation theories of these structures. Theoretical material in the book is supplemented by many problems and exercises which touch upon a lot of additional topics; the more difficult exercises are provided with hints. The book is designed as a textbook for advanced undergraduate and beginning graduate students. It should be accessible to students with a strong background in linear algebra and a basic knowledge of abstract algebra.
Publisher: American Mathematical Soc.
ISBN: 0821853511
Category : Mathematics
Languages : en
Pages : 240
Book Description
Very roughly speaking, representation theory studies symmetry in linear spaces. It is a beautiful mathematical subject which has many applications, ranging from number theory and combinatorics to geometry, probability theory, quantum mechanics, and quantum field theory. The goal of this book is to give a ``holistic'' introduction to representation theory, presenting it as a unified subject which studies representations of associative algebras and treating the representation theories of groups, Lie algebras, and quivers as special cases. Using this approach, the book covers a number of standard topics in the representation theories of these structures. Theoretical material in the book is supplemented by many problems and exercises which touch upon a lot of additional topics; the more difficult exercises are provided with hints. The book is designed as a textbook for advanced undergraduate and beginning graduate students. It should be accessible to students with a strong background in linear algebra and a basic knowledge of abstract algebra.