Author: Victor G. Kac
Publisher: Springer Science & Business Media
ISBN: 1475713827
Category : Mathematics
Languages : en
Pages : 267
Book Description
Infinite Dimensional Lie Algebras
Author: Victor G. Kac
Publisher: Springer Science & Business Media
ISBN: 1475713827
Category : Mathematics
Languages : en
Pages : 267
Book Description
Publisher: Springer Science & Business Media
ISBN: 1475713827
Category : Mathematics
Languages : en
Pages : 267
Book Description
Lectures On Infinite-dimensional Lie Algebra
Author: Minoru Wakimoto
Publisher: World Scientific
ISBN: 9814494003
Category : Mathematics
Languages : en
Pages : 456
Book Description
The representation theory of affine Lie algebras has been developed in close connection with various areas of mathematics and mathematical physics in the last two decades. There are three excellent books on it, written by Victor G Kac. This book begins with a survey and review of the material treated in Kac's books. In particular, modular invariance and conformal invariance are explained in more detail. The book then goes further, dealing with some of the recent topics involving the representation theory of affine Lie algebras. Since these topics are important not only in themselves but also in their application to some areas of mathematics and mathematical physics, the book expounds them with examples and detailed calculations.
Publisher: World Scientific
ISBN: 9814494003
Category : Mathematics
Languages : en
Pages : 456
Book Description
The representation theory of affine Lie algebras has been developed in close connection with various areas of mathematics and mathematical physics in the last two decades. There are three excellent books on it, written by Victor G Kac. This book begins with a survey and review of the material treated in Kac's books. In particular, modular invariance and conformal invariance are explained in more detail. The book then goes further, dealing with some of the recent topics involving the representation theory of affine Lie algebras. Since these topics are important not only in themselves but also in their application to some areas of mathematics and mathematical physics, the book expounds them with examples and detailed calculations.
Infinite Dimensional Groups with Applications
Author: Victor Kac
Publisher: Springer Science & Business Media
ISBN: 9780387962160
Category : Mathematics
Languages : en
Pages : 406
Book Description
This volume records most of the talks given at the Conference on Infinite-dimensional Groups held at the Mathematical Sciences Research Institute at Berkeley, California, May 10-May 15, 1984, as a part of the special program on Kac-Moody Lie algebras. The purpose of the conference was to review recent developments of the theory of infinite-dimensional groups and its applications. The present collection concentrates on three very active, interrelated directions of the field: general Kac-Moody groups, gauge groups (especially loop groups) and diffeomorphism groups. I would like to express my thanks to the MSRI for sponsoring the meeting, to Ms. Faye Yeager for excellent typing, to the authors for their manuscripts, and to Springer-Verlag for publishing this volume. V. Kac INFINITE DIMENSIONAL GROUPS WITH APPLICATIONS CONTENTS The Lie Group Structure of M. Adams. T. Ratiu 1 Diffeomorphism Groups and & R. Schmid Invertible Fourier Integral Operators with Applications On Landau-Lifshitz Equation and E. Date 71 Infinite Dimensional Groups Flat Manifolds and Infinite D. S. Freed 83 Dimensional Kahler Geometry Positive-Energy Representations R. Goodman 125 of the Group of Diffeomorphisms of the Circle Instantons and Harmonic Maps M. A. Guest 137 A Coxeter Group Approach to Z. Haddad 157 Schubert Varieties Constructing Groups Associated to V. G. Kac 167 Infinite-Dimensional Lie Algebras I. Kaplansky 217 Harish-Chandra Modules Over the Virasoro Algebra & L. J. Santharoubane 233 Rational Homotopy Theory of Flag S.
Publisher: Springer Science & Business Media
ISBN: 9780387962160
Category : Mathematics
Languages : en
Pages : 406
Book Description
This volume records most of the talks given at the Conference on Infinite-dimensional Groups held at the Mathematical Sciences Research Institute at Berkeley, California, May 10-May 15, 1984, as a part of the special program on Kac-Moody Lie algebras. The purpose of the conference was to review recent developments of the theory of infinite-dimensional groups and its applications. The present collection concentrates on three very active, interrelated directions of the field: general Kac-Moody groups, gauge groups (especially loop groups) and diffeomorphism groups. I would like to express my thanks to the MSRI for sponsoring the meeting, to Ms. Faye Yeager for excellent typing, to the authors for their manuscripts, and to Springer-Verlag for publishing this volume. V. Kac INFINITE DIMENSIONAL GROUPS WITH APPLICATIONS CONTENTS The Lie Group Structure of M. Adams. T. Ratiu 1 Diffeomorphism Groups and & R. Schmid Invertible Fourier Integral Operators with Applications On Landau-Lifshitz Equation and E. Date 71 Infinite Dimensional Groups Flat Manifolds and Infinite D. S. Freed 83 Dimensional Kahler Geometry Positive-Energy Representations R. Goodman 125 of the Group of Diffeomorphisms of the Circle Instantons and Harmonic Maps M. A. Guest 137 A Coxeter Group Approach to Z. Haddad 157 Schubert Varieties Constructing Groups Associated to V. G. Kac 167 Infinite-Dimensional Lie Algebras I. Kaplansky 217 Harish-Chandra Modules Over the Virasoro Algebra & L. J. Santharoubane 233 Rational Homotopy Theory of Flag S.
Introduction to Finite and Infinite Dimensional Lie (Super)algebras
Author: Neelacanta Sthanumoorthy
Publisher: Academic Press
ISBN: 012804683X
Category : Mathematics
Languages : en
Pages : 514
Book Description
Lie superalgebras are a natural generalization of Lie algebras, having applications in geometry, number theory, gauge field theory, and string theory. Introduction to Finite and Infinite Dimensional Lie Algebras and Superalgebras introduces the theory of Lie superalgebras, their algebras, and their representations. The material covered ranges from basic definitions of Lie groups to the classification of finite-dimensional representations of semi-simple Lie algebras. While discussing all classes of finite and infinite dimensional Lie algebras and Lie superalgebras in terms of their different classes of root systems, the book focuses on Kac-Moody algebras. With numerous exercises and worked examples, it is ideal for graduate courses on Lie groups and Lie algebras. - Discusses the fundamental structure and all root relationships of Lie algebras and Lie superalgebras and their finite and infinite dimensional representation theory - Closely describes BKM Lie superalgebras, their different classes of imaginary root systems, their complete classifications, root-supermultiplicities, and related combinatorial identities - Includes numerous tables of the properties of individual Lie algebras and Lie superalgebras - Focuses on Kac-Moody algebras
Publisher: Academic Press
ISBN: 012804683X
Category : Mathematics
Languages : en
Pages : 514
Book Description
Lie superalgebras are a natural generalization of Lie algebras, having applications in geometry, number theory, gauge field theory, and string theory. Introduction to Finite and Infinite Dimensional Lie Algebras and Superalgebras introduces the theory of Lie superalgebras, their algebras, and their representations. The material covered ranges from basic definitions of Lie groups to the classification of finite-dimensional representations of semi-simple Lie algebras. While discussing all classes of finite and infinite dimensional Lie algebras and Lie superalgebras in terms of their different classes of root systems, the book focuses on Kac-Moody algebras. With numerous exercises and worked examples, it is ideal for graduate courses on Lie groups and Lie algebras. - Discusses the fundamental structure and all root relationships of Lie algebras and Lie superalgebras and their finite and infinite dimensional representation theory - Closely describes BKM Lie superalgebras, their different classes of imaginary root systems, their complete classifications, root-supermultiplicities, and related combinatorial identities - Includes numerous tables of the properties of individual Lie algebras and Lie superalgebras - Focuses on Kac-Moody algebras
Cohomology of Infinite-Dimensional Lie Algebras
Author: D B Fuks
Publisher:
ISBN: 9781468487664
Category :
Languages : en
Pages : 352
Book Description
Publisher:
ISBN: 9781468487664
Category :
Languages : en
Pages : 352
Book Description
Classical Lie Algebras at Infinity
Author: Ivan Penkov
Publisher: Springer Nature
ISBN: 3030896609
Category : Mathematics
Languages : en
Pages : 245
Book Description
Originating from graduate topics courses given by the first author, this book functions as a unique text-monograph hybrid that bridges a traditional graduate course to research level representation theory. The exposition includes an introduction to the subject, some highlights of the theory and recent results in the field, and is therefore appropriate for advanced graduate students entering the field as well as research mathematicians wishing to expand their knowledge. The mathematical background required varies from chapter to chapter, but a standard course on Lie algebras and their representations, along with some knowledge of homological algebra, is necessary. Basic algebraic geometry and sheaf cohomology are needed for Chapter 10. Exercises of various levels of difficulty are interlaced throughout the text to add depth to topical comprehension. The unifying theme of this book is the structure and representation theory of infinite-dimensional locally reductive Lie algebras and superalgebras. Chapters 1-6 are foundational; each of the last 4 chapters presents a self-contained study of a specialized topic within the larger field. Lie superalgebras and flag supermanifolds are discussed in Chapters 3, 7, and 10, and may be skipped by the reader.
Publisher: Springer Nature
ISBN: 3030896609
Category : Mathematics
Languages : en
Pages : 245
Book Description
Originating from graduate topics courses given by the first author, this book functions as a unique text-monograph hybrid that bridges a traditional graduate course to research level representation theory. The exposition includes an introduction to the subject, some highlights of the theory and recent results in the field, and is therefore appropriate for advanced graduate students entering the field as well as research mathematicians wishing to expand their knowledge. The mathematical background required varies from chapter to chapter, but a standard course on Lie algebras and their representations, along with some knowledge of homological algebra, is necessary. Basic algebraic geometry and sheaf cohomology are needed for Chapter 10. Exercises of various levels of difficulty are interlaced throughout the text to add depth to topical comprehension. The unifying theme of this book is the structure and representation theory of infinite-dimensional locally reductive Lie algebras and superalgebras. Chapters 1-6 are foundational; each of the last 4 chapters presents a self-contained study of a specialized topic within the larger field. Lie superalgebras and flag supermanifolds are discussed in Chapters 3, 7, and 10, and may be skipped by the reader.
Lie Theory
Author: Jean-Philippe Anker
Publisher: Springer Science & Business Media
ISBN: 0817681922
Category : Mathematics
Languages : en
Pages : 341
Book Description
* First of three independent, self-contained volumes under the general title, "Lie Theory," featuring original results and survey work from renowned mathematicians. * Contains J. C. Jantzen's "Nilpotent Orbits in Representation Theory," and K.-H. Neeb's "Infinite Dimensional Groups and their Representations." * Comprehensive treatments of the relevant geometry of orbits in Lie algebras, or their duals, and the correspondence to representations. * Should benefit graduate students and researchers in mathematics and mathematical physics.
Publisher: Springer Science & Business Media
ISBN: 0817681922
Category : Mathematics
Languages : en
Pages : 341
Book Description
* First of three independent, self-contained volumes under the general title, "Lie Theory," featuring original results and survey work from renowned mathematicians. * Contains J. C. Jantzen's "Nilpotent Orbits in Representation Theory," and K.-H. Neeb's "Infinite Dimensional Groups and their Representations." * Comprehensive treatments of the relevant geometry of orbits in Lie algebras, or their duals, and the correspondence to representations. * Should benefit graduate students and researchers in mathematics and mathematical physics.
Lie Groups, Lie Algebras, and Their Representations
Author: V.S. Varadarajan
Publisher: Springer Science & Business Media
ISBN: 1461211263
Category : Mathematics
Languages : en
Pages : 444
Book Description
This book has grown out of a set of lecture notes I had prepared for a course on Lie groups in 1966. When I lectured again on the subject in 1972, I revised the notes substantially. It is the revised version that is now appearing in book form. The theory of Lie groups plays a fundamental role in many areas of mathematics. There are a number of books on the subject currently available -most notably those of Chevalley, Jacobson, and Bourbaki-which present various aspects of the theory in great depth. However, 1 feei there is a need for a single book in English which develops both the algebraic and analytic aspects of the theory and which goes into the representation theory of semi simple Lie groups and Lie algebras in detail. This book is an attempt to fiii this need. It is my hope that this book will introduce the aspiring graduate student as well as the nonspecialist mathematician to the fundamental themes of the subject. I have made no attempt to discuss infinite-dimensional representations. This is a very active field, and a proper treatment of it would require another volume (if not more) of this size. However, the reader who wants to take up this theory will find that this book prepares him reasonably well for that task.
Publisher: Springer Science & Business Media
ISBN: 1461211263
Category : Mathematics
Languages : en
Pages : 444
Book Description
This book has grown out of a set of lecture notes I had prepared for a course on Lie groups in 1966. When I lectured again on the subject in 1972, I revised the notes substantially. It is the revised version that is now appearing in book form. The theory of Lie groups plays a fundamental role in many areas of mathematics. There are a number of books on the subject currently available -most notably those of Chevalley, Jacobson, and Bourbaki-which present various aspects of the theory in great depth. However, 1 feei there is a need for a single book in English which develops both the algebraic and analytic aspects of the theory and which goes into the representation theory of semi simple Lie groups and Lie algebras in detail. This book is an attempt to fiii this need. It is my hope that this book will introduce the aspiring graduate student as well as the nonspecialist mathematician to the fundamental themes of the subject. I have made no attempt to discuss infinite-dimensional representations. This is a very active field, and a proper treatment of it would require another volume (if not more) of this size. However, the reader who wants to take up this theory will find that this book prepares him reasonably well for that task.
Compact Lie Groups and Their Representations
Author: Dmitriĭ Petrovich Zhelobenko
Publisher: American Mathematical Soc.
ISBN: 9780821886649
Category : Mathematics
Languages : en
Pages : 464
Book Description
Publisher: American Mathematical Soc.
ISBN: 9780821886649
Category : Mathematics
Languages : en
Pages : 464
Book Description
Infinite-Dimensional Representations of 2-Groups
Author: John C. Baez
Publisher: American Mathematical Soc.
ISBN: 0821872842
Category : Mathematics
Languages : en
Pages : 133
Book Description
Just as groups can have representations on vector spaces, 2-groups have representations on 2-vector spaces, but Lie 2-groups typically have few representations on the finite-dimensional 2-vector spaces introduced by Kapranov and Voevodsky. Therefore, Crane, Sheppeard, and Yetter introduced certain infinite-dimensional 2-vector spaces, called measurable categories, to study infinite-dimensional representations of certain Lie 2-groups, and German and North American mathematicians continue that work here. After introductory matters, they cover representations of 2-groups, and measurable categories, representations on measurable categories. There is no index. Annotation ©2012 Book News, Inc., Portland, OR (booknews.com).
Publisher: American Mathematical Soc.
ISBN: 0821872842
Category : Mathematics
Languages : en
Pages : 133
Book Description
Just as groups can have representations on vector spaces, 2-groups have representations on 2-vector spaces, but Lie 2-groups typically have few representations on the finite-dimensional 2-vector spaces introduced by Kapranov and Voevodsky. Therefore, Crane, Sheppeard, and Yetter introduced certain infinite-dimensional 2-vector spaces, called measurable categories, to study infinite-dimensional representations of certain Lie 2-groups, and German and North American mathematicians continue that work here. After introductory matters, they cover representations of 2-groups, and measurable categories, representations on measurable categories. There is no index. Annotation ©2012 Book News, Inc., Portland, OR (booknews.com).