Representation Type of Commutative Noetherian Rings III: Global Wildness and Tameness PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Representation Type of Commutative Noetherian Rings III: Global Wildness and Tameness PDF full book. Access full book title Representation Type of Commutative Noetherian Rings III: Global Wildness and Tameness by Lee Klingler. Download full books in PDF and EPUB format.

Representation Type of Commutative Noetherian Rings III: Global Wildness and Tameness

Representation Type of Commutative Noetherian Rings III: Global Wildness and Tameness PDF Author: Lee Klingler
Publisher: American Mathematical Soc.
ISBN: 0821837389
Category : Mathematics
Languages : en
Pages : 187

Book Description
This memoir completes the series of papers beginning with [KL1,KL2], showing that, for a commutative noetherian ring $\Lambda$, either the category of $\Lambda$-modules of finite length has wild representation type or else we can describe the category of finitely generated $\Lambda$-modules, including their direct-sum relations and local-global relations. (There is a possible exception to our results, involving characteristic 2.)

Representation Type of Commutative Noetherian Rings III: Global Wildness and Tameness

Representation Type of Commutative Noetherian Rings III: Global Wildness and Tameness PDF Author: Lee Klingler
Publisher: American Mathematical Soc.
ISBN: 0821837389
Category : Mathematics
Languages : en
Pages : 187

Book Description
This memoir completes the series of papers beginning with [KL1,KL2], showing that, for a commutative noetherian ring $\Lambda$, either the category of $\Lambda$-modules of finite length has wild representation type or else we can describe the category of finitely generated $\Lambda$-modules, including their direct-sum relations and local-global relations. (There is a possible exception to our results, involving characteristic 2.)

Algebras, Rings and Their Representations

Algebras, Rings and Their Representations PDF Author: Alberto Facchini
Publisher: World Scientific
ISBN: 9812565981
Category : Technology & Engineering
Languages : en
Pages : 404

Book Description
Surveying the most influential developments in the field, this proceedings reviews the latest research on algebras and their representations, commutative and non-commutative rings, modules, conformal algebras, and torsion theories.The volume collects stimulating discussions from world-renowned names including Tsit-Yuen Lam, Larry Levy, Barbara Osofsky, and Patrick Smith.

Abelian Groups, Rings, Modules, and Homological Algebra

Abelian Groups, Rings, Modules, and Homological Algebra PDF Author: Pat Goeters
Publisher: CRC Press
ISBN: 142001076X
Category : Mathematics
Languages : en
Pages : 354

Book Description
About the book In honor of Edgar Enochs and his venerable contributions to a broad range of topics in Algebra, top researchers from around the world gathered at Auburn University to report on their latest work and exchange ideas on some of today's foremost research topics. This carefully edited volume presents the refereed papers of the par

Algebras, Rings And Their Representations - Proceedings Of The International Conference On Algebras, Modules And Rings

Algebras, Rings And Their Representations - Proceedings Of The International Conference On Algebras, Modules And Rings PDF Author: Alberto Facchini
Publisher: World Scientific
ISBN: 9814478970
Category : Mathematics
Languages : en
Pages : 403

Book Description
Surveying the most influential developments in the field, this proceedings reviews the latest research on algebras and their representations, commutative and non-commutative rings, modules, conformal algebras, and torsion theories.The volume collects stimulating discussions from world-renowned names including Tsit-Yuen Lam, Larry Levy, Barbara Osofsky, and Patrick Smith.

Rings, Modules and Representations

Rings, Modules and Representations PDF Author: Viet Dung Nguyen
Publisher: American Mathematical Soc.
ISBN: 0821843702
Category : Mathematics
Languages : en
Pages : 377

Book Description
The papers in this volume contain results in active research areas in the theory of rings and modules, including non commutative and commutative ring theory, module theory, representation theory, and coding theory.

An Introduction to Noncommutative Noetherian Rings

An Introduction to Noncommutative Noetherian Rings PDF Author: K. R. Goodearl
Publisher: Cambridge University Press
ISBN: 9780521545372
Category : Mathematics
Languages : en
Pages : 372

Book Description
This introduction to noncommutative noetherian rings is intended to be accessible to anyone with a basic background in abstract algebra. It can be used as a second-year graduate text, or as a self-contained reference. Extensive explanatory discussion is given, and exercises are integrated throughout. This edition incorporates substantial revisions, particularly in the first third of the book, where the presentation has been changed to increase accessibility and topicality. New material includes the basic types of quantum groups, which then serve as test cases for the theory developed.

Representations of Finite Groups

Representations of Finite Groups PDF Author: Hirosi Nagao
Publisher: Elsevier
ISBN: 1483269930
Category : Mathematics
Languages : en
Pages : 443

Book Description
Representations of Finite Groups provides an account of the fundamentals of ordinary and modular representations. This book discusses the fundamental theory of complex representations of finite groups. Organized into five chapters, this book begins with an overview of the basic facts about rings and modules. This text then provides the theory of algebras, including theories of simple algebras, Frobenius algebras, crossed products, and Schur indices with representation-theoretic versions of them. Other chapters include a survey of the fundamental theory of modular representations, with emphasis on Brauer characters. This book discusses as well the module-theoretic representation theory due to Green and includes some topics such as Burry–Carlson's theorem and Scott modules. The final chapter deals with the fundamental results of Brauer on blocks and Fong's theory of covering, and includes some approaches to them. This book is a valuable resource for readers who are interested in the various approaches to the study of the representations of groups.

Invariant Means and Finite Representation Theory of $C^*$-Algebras

Invariant Means and Finite Representation Theory of $C^*$-Algebras PDF Author: Nathanial Patrick Brown
Publisher: American Mathematical Soc.
ISBN: 0821839160
Category : Mathematics
Languages : en
Pages : 122

Book Description
Various subsets of the tracial state space of a unital C$*$-algebra are studied. The largest of these subsets has a natural interpretation as the space of invariant means. II$ 1$-factor representations of a class of C$*$-algebras considered by Sorin Popa are also studied. These algebras are shown to have an unexpected variety of II$ 1$-factor representations. In addition to developing some general theory we also show that these ideas are related to numerous other problems inoperator algebras.

Approximations and Endomorphism Algebras of Modules

Approximations and Endomorphism Algebras of Modules PDF Author: Rüdiger Göbel
Publisher: Walter de Gruyter
ISBN: 3110218119
Category : Mathematics
Languages : en
Pages : 1002

Book Description
This second, revised and substantially extended edition of Approximations and Endomorphism Algebras of Modules reflects both the depth and the width of recent developments in the area since the first edition appeared in 2006. The new division of the monograph into two volumes roughly corresponds to its two central topics, approximation theory (Volume 1) and realization theorems for modules (Volume 2). It is a widely accepted fact that the category of all modules over a general associative ring is too complex to admit classification. Unless the ring is of finite representation type we must limit attempts at classification to some restricted subcategories of modules. The wild character of the category of all modules, or of one of its subcategories C, is often indicated by the presence of a realization theorem, that is, by the fact that any reasonable algebra is isomorphic to the endomorphism algebra of a module from C. This results in the existence of pathological direct sum decompositions, and these are generally viewed as obstacles to classification. In order to overcome this problem, the approximation theory of modules has been developed. The idea here is to select suitable subcategories C whose modules can be classified, and then to approximate arbitrary modules by those from C. These approximations are neither unique nor functorial in general, but there is a rich supply available appropriate to the requirements of various particular applications. The authors bring the two theories together. The first volume, Approximations, sets the scene in Part I by introducing the main classes of modules relevant here: the S-complete, pure-injective, Mittag-Leffler, and slender modules. Parts II and III of the first volume develop the key methods of approximation theory. Some of the recent applications to the structure of modules are also presented here, notably for tilting, cotilting, Baer, and Mittag-Leffler modules. In the second volume, Predictions, further basic instruments are introduced: the prediction principles, and their applications to proving realization theorems. Moreover, tools are developed there for answering problems motivated in algebraic topology. The authors concentrate on the impossibility of classification for modules over general rings. The wild character of many categories C of modules is documented here by the realization theorems that represent critical R-algebras over commutative rings R as endomorphism algebras of modules from C. The monograph starts from basic facts and gradually develops the theory towards its present frontiers. It is suitable both for graduate students interested in algebra and for experts in module and representation theory.

The Beilinson Complex and Canonical Rings of Irregular Surfaces

The Beilinson Complex and Canonical Rings of Irregular Surfaces PDF Author: Alberto Canonaco
Publisher: American Mathematical Soc.
ISBN: 0821841939
Category : Mathematics
Languages : en
Pages : 114

Book Description
An important theorem by Beilinson describes the bounded derived category of coherent sheaves on $\mathbb{P n$, yielding in particular a resolution of every coherent sheaf on $\mathbb{P n$ in terms of the vector bundles $\Omega {\mathbb{P n j(j)$ for $0\le j\le n$. This theorem is here extended to weighted projective spaces. To this purpose we consider, instead of the usual category of coherent sheaves on $\mathbb{P ({\rm w )$ (the weighted projective space of weights $\rm w=({\rm w 0,\dots,{\rm w n)$), a suitable category of graded coherent sheaves (the two categories are equivalent if and only if ${\rm w 0=\cdots={\rm w n=1$, i.e. $\mathbb{P ({\rm w )= \mathbb{P n$), obtained by endowing $\mathbb{P ({\rm w )$ with a natural graded structure sheaf. The resulting graded ringed space $\overline{\mathbb{P ({\rm w )$ is an example of graded scheme (in chapter 1 graded schemes are defined and studied in some greater generality than is needed in the rest of the work). Then in chapter 2 we prove This weighted version of Beilinson's theorem is then applied in chapter 3 to prove a structure theorem for good birational weighted canonical projections of surfaces of general type (i.e., for morphisms, which are birational onto the image, from a minimal surface of general type $S$ into a $3$-dimensional $\mathbb{P ({\rm w )$, induced by $4$ sections $\sigma i\in H0(S,\mathcal{O S({\rm w iK S))$). This is a generalization of a theorem by Catanese and Schreyer (who treated the case of projections into $\mathbb{P 3$), and is mainly interesting for irregular surfaces, since in the regular case a similar but simpler result (due to Catanese) was already known. The theorem essentially states that giving a good birational weighted canonical projection is equivalent to giving a symmetric morphism of (graded) vector bundles on $\overline{\mathbb{P ({\rm w )$, satisfying some suitable conditions. Such a morphism is then explicitly determined in chapter 4 for a family of surfaces with numerical invariant