Author: Charles W. Curtis
Publisher: American Mathematical Soc.
ISBN: 9780821869451
Category : Mathematics
Languages : en
Pages : 722
Book Description
Representation Theory of Finite Groups and Associative Algebras
Author: Charles W. Curtis
Publisher: American Mathematical Soc.
ISBN: 9780821869451
Category : Mathematics
Languages : en
Pages : 722
Book Description
Publisher: American Mathematical Soc.
ISBN: 9780821869451
Category : Mathematics
Languages : en
Pages : 722
Book Description
Representation Theory of Finite Groups and Associative Algebras
Author: Charles W. Curtis
Publisher: American Mathematical Soc.
ISBN: 0821840665
Category : Mathematics
Languages : en
Pages : 714
Book Description
Provides an introduction to various aspects of the representation theory of finite groups. This book covers such topics as general non-commutative algebras, Frobenius algebras, representations over non-algebraically closed fields and fields of non-zero characteristic, and integral representations.
Publisher: American Mathematical Soc.
ISBN: 0821840665
Category : Mathematics
Languages : en
Pages : 714
Book Description
Provides an introduction to various aspects of the representation theory of finite groups. This book covers such topics as general non-commutative algebras, Frobenius algebras, representations over non-algebraically closed fields and fields of non-zero characteristic, and integral representations.
Representations and Cohomology: Volume 2, Cohomology of Groups and Modules
Author: D. J. Benson
Publisher: Cambridge University Press
ISBN: 9780521636520
Category : Mathematics
Languages : en
Pages : 296
Book Description
A further introduction to modern developments in the representation theory of finite groups and associative algebras.
Publisher: Cambridge University Press
ISBN: 9780521636520
Category : Mathematics
Languages : en
Pages : 296
Book Description
A further introduction to modern developments in the representation theory of finite groups and associative algebras.
Representations and Cohomology: Volume 1, Basic Representation Theory of Finite Groups and Associative Algebras
Author: D. J. Benson
Publisher: Cambridge University Press
ISBN: 9780521636537
Category : Mathematics
Languages : en
Pages : 260
Book Description
An introduction to modern developments in the representation theory of finite groups and associative algebras.
Publisher: Cambridge University Press
ISBN: 9780521636537
Category : Mathematics
Languages : en
Pages : 260
Book Description
An introduction to modern developments in the representation theory of finite groups and associative algebras.
Elements of the Representation Theory of Associative Algebras: Volume 1
Author: Ibrahim Assem
Publisher: Cambridge University Press
ISBN: 9780521584234
Category : Mathematics
Languages : en
Pages : 480
Book Description
This is the first of a two-volume set that provides a modern account of the representation theory of finite dimensional associative algebras over an algebraically closed field. The subject is presented from the perspective of linear representations of quivers and homological algebra. The treatment is self-contained and provides an elementary and up-to-date introduction to the subject using quiver-theoretical techniques and the theory of almost split sequences as well as tilting theory and the use of integral quadratic forms. Much of this material has never appeared before in book form. The book is primarily addressed to graduate students starting research in the representation theory of algebras, but it will also be of interest to mathematicians in other fields. The text includes many illustrative examples and a large number of exercises at the end of each of the ten chapters. Proofs are presented in complete detail, making the book suitable for courses, seminars, and self-study. Book jacket.
Publisher: Cambridge University Press
ISBN: 9780521584234
Category : Mathematics
Languages : en
Pages : 480
Book Description
This is the first of a two-volume set that provides a modern account of the representation theory of finite dimensional associative algebras over an algebraically closed field. The subject is presented from the perspective of linear representations of quivers and homological algebra. The treatment is self-contained and provides an elementary and up-to-date introduction to the subject using quiver-theoretical techniques and the theory of almost split sequences as well as tilting theory and the use of integral quadratic forms. Much of this material has never appeared before in book form. The book is primarily addressed to graduate students starting research in the representation theory of algebras, but it will also be of interest to mathematicians in other fields. The text includes many illustrative examples and a large number of exercises at the end of each of the ten chapters. Proofs are presented in complete detail, making the book suitable for courses, seminars, and self-study. Book jacket.
Representation Theory of Finite Groups
Author: Benjamin Steinberg
Publisher: Springer Science & Business Media
ISBN: 1461407761
Category : Mathematics
Languages : en
Pages : 166
Book Description
This book is intended to present group representation theory at a level accessible to mature undergraduate students and beginning graduate students. This is achieved by mainly keeping the required background to the level of undergraduate linear algebra, group theory and very basic ring theory. Module theory and Wedderburn theory, as well as tensor products, are deliberately avoided. Instead, we take an approach based on discrete Fourier Analysis. Applications to the spectral theory of graphs are given to help the student appreciate the usefulness of the subject. A number of exercises are included. This book is intended for a 3rd/4th undergraduate course or an introductory graduate course on group representation theory. However, it can also be used as a reference for workers in all areas of mathematics and statistics.
Publisher: Springer Science & Business Media
ISBN: 1461407761
Category : Mathematics
Languages : en
Pages : 166
Book Description
This book is intended to present group representation theory at a level accessible to mature undergraduate students and beginning graduate students. This is achieved by mainly keeping the required background to the level of undergraduate linear algebra, group theory and very basic ring theory. Module theory and Wedderburn theory, as well as tensor products, are deliberately avoided. Instead, we take an approach based on discrete Fourier Analysis. Applications to the spectral theory of graphs are given to help the student appreciate the usefulness of the subject. A number of exercises are included. This book is intended for a 3rd/4th undergraduate course or an introductory graduate course on group representation theory. However, it can also be used as a reference for workers in all areas of mathematics and statistics.
Methods of Representation Theory
Author: Charles W. Curtis
Publisher: Wiley-Interscience
ISBN: 9780471060048
Category : Mathematics
Languages : en
Pages : 0
Book Description
The Wiley Classics Library consists of selected books that have become recognized classics in their respective fields. With these new unabridged and inexpensive editions, Wiley hopes to extend the life of these important works by making them available to future generations of mathematicians and scientists. Currently available in the Series: T.W. Anderson The Statistical Analysis of Time Series T.S. Arthanari & Yadolah Dodge Mathematical Programming in Statistics Emil Artin Geometric Algebra Norman T. J. Bailey The Elements of Stochastic Processes with Applications to the Natural Sciences George E. P. Box & George C. Tiao Bayesian Inference in Statistical Analysis R. W. Carter Simple Groups of Lie Type William G. Cochran & Gertrude M. Cox Experimental Designs, Second Edition Richard Courant Differential and Integral Calculus, Volume I Richard Courant Differential and Integral Calculus, Volume II Richard Courant & D. Hilbert Methods of Mathematical Physics, Volume I Richard Courant & D. Hilbert Methods of Mathematical Physics, Volume II D. R. Cox Planning of Experiments Harold M. S. Coxeter Introduction to Modern Geometry, Second Edition Charles W. Curtis & Irving Reiner Representation Theory of Finite Groups and Associative Algebras Charles W. Curtis & Irving Reiner Methods of Representation Theory with Applications to Finite Groups and Orders, Volume I Charles W. Curtis & Irving Reiner Methods of Representation Theory with Applications to Finite Groups and Orders, Volume II Bruno de Finetti Theory of Probability, Volume 1 Bruno de Finetti Theory of Probability, Volume 2 W. Edwards Deming Sample Design in Business Research Amos de Shalit & Herman Feshbach Theoretical Nuclear Physics, Volume 1 —Nuclear Structure J. L. Doob Stochastic Processes Nelson Dunford & Jacob T. Schwartz Linear Operators, Part One, General Theory Nelson Dunford & Jacob T. Schwartz Linear Operators, Part Two, Spectral Theory—Self Adjoint Operators in Hilbert Space Nelson Dunford & Jacob T. Schwartz Linear Operators, Part Three, Spectral Operators Herman Feshbach Theoretical Nuclear Physics: Nuclear Reactions Bernard Friedman Lectures on Applications-Oriented Mathematics Gerald J. Hahn & Samuel S. Shapiro Statistical Models in Engineering Morris H. Hansen, William N. Hurwitz & William G. Madow Sample Survey Methods and Theory, Volume I—Methods and Applications Morris H. Hansen, William N. Hurwitz & William G. Madow Sample Survey Methods and Theory, Volume II—Theory Peter Henrici Applied and Computational Complex Analysis, Volume 1—Power Series—Integration—Conformal Mapping—Location of Zeros Peter Henrici Applied and Computational Complex Analysis, Volume 2—Special Functions—Integral Transforms—Asymptotics—Continued Fractions Peter Henrici Applied and Computational Complex Analysis, Volume 3—Discrete Fourier Analysis—Cauchy Integrals—Construction of Conformal Maps—Univalent Functions Peter Hilton & Yel-Chiang Wu A Course in Modern Algebra Harry Hochstadt Integral Equations Erwin O. Kreyszig Introductory Functional Analysis with Applications William H. Louisell Quantum Statistical Properties of Radiation Ali Hasan Nayfeh Introduction to Perturbation Techniques Emanuel Parzen Modern Probability Theory and Its Applications P. M. Prenter Splines and Variational Methods Walter Rudin Fourier Analysis on Groups C. L. Siegel Topics in Complex Function Theory, Volume I—Elliptic Functions and Uniformization Theory C. L. Siegel Topics in Complex Function Theory, Volume II—Automorphic and Abelian Integrals C. L. Siegel Topics in Complex Function Theory, Volume III—Abelian Functions & Modular Functions of Several Variables J. J. Stoker Differential Geometry J. J. Stoker Water Waves: The Mathematical Theory with Applications J. J. Stoker Nonlinear Vibrations in Mechanical and Electrical Systems
Publisher: Wiley-Interscience
ISBN: 9780471060048
Category : Mathematics
Languages : en
Pages : 0
Book Description
The Wiley Classics Library consists of selected books that have become recognized classics in their respective fields. With these new unabridged and inexpensive editions, Wiley hopes to extend the life of these important works by making them available to future generations of mathematicians and scientists. Currently available in the Series: T.W. Anderson The Statistical Analysis of Time Series T.S. Arthanari & Yadolah Dodge Mathematical Programming in Statistics Emil Artin Geometric Algebra Norman T. J. Bailey The Elements of Stochastic Processes with Applications to the Natural Sciences George E. P. Box & George C. Tiao Bayesian Inference in Statistical Analysis R. W. Carter Simple Groups of Lie Type William G. Cochran & Gertrude M. Cox Experimental Designs, Second Edition Richard Courant Differential and Integral Calculus, Volume I Richard Courant Differential and Integral Calculus, Volume II Richard Courant & D. Hilbert Methods of Mathematical Physics, Volume I Richard Courant & D. Hilbert Methods of Mathematical Physics, Volume II D. R. Cox Planning of Experiments Harold M. S. Coxeter Introduction to Modern Geometry, Second Edition Charles W. Curtis & Irving Reiner Representation Theory of Finite Groups and Associative Algebras Charles W. Curtis & Irving Reiner Methods of Representation Theory with Applications to Finite Groups and Orders, Volume I Charles W. Curtis & Irving Reiner Methods of Representation Theory with Applications to Finite Groups and Orders, Volume II Bruno de Finetti Theory of Probability, Volume 1 Bruno de Finetti Theory of Probability, Volume 2 W. Edwards Deming Sample Design in Business Research Amos de Shalit & Herman Feshbach Theoretical Nuclear Physics, Volume 1 —Nuclear Structure J. L. Doob Stochastic Processes Nelson Dunford & Jacob T. Schwartz Linear Operators, Part One, General Theory Nelson Dunford & Jacob T. Schwartz Linear Operators, Part Two, Spectral Theory—Self Adjoint Operators in Hilbert Space Nelson Dunford & Jacob T. Schwartz Linear Operators, Part Three, Spectral Operators Herman Feshbach Theoretical Nuclear Physics: Nuclear Reactions Bernard Friedman Lectures on Applications-Oriented Mathematics Gerald J. Hahn & Samuel S. Shapiro Statistical Models in Engineering Morris H. Hansen, William N. Hurwitz & William G. Madow Sample Survey Methods and Theory, Volume I—Methods and Applications Morris H. Hansen, William N. Hurwitz & William G. Madow Sample Survey Methods and Theory, Volume II—Theory Peter Henrici Applied and Computational Complex Analysis, Volume 1—Power Series—Integration—Conformal Mapping—Location of Zeros Peter Henrici Applied and Computational Complex Analysis, Volume 2—Special Functions—Integral Transforms—Asymptotics—Continued Fractions Peter Henrici Applied and Computational Complex Analysis, Volume 3—Discrete Fourier Analysis—Cauchy Integrals—Construction of Conformal Maps—Univalent Functions Peter Hilton & Yel-Chiang Wu A Course in Modern Algebra Harry Hochstadt Integral Equations Erwin O. Kreyszig Introductory Functional Analysis with Applications William H. Louisell Quantum Statistical Properties of Radiation Ali Hasan Nayfeh Introduction to Perturbation Techniques Emanuel Parzen Modern Probability Theory and Its Applications P. M. Prenter Splines and Variational Methods Walter Rudin Fourier Analysis on Groups C. L. Siegel Topics in Complex Function Theory, Volume I—Elliptic Functions and Uniformization Theory C. L. Siegel Topics in Complex Function Theory, Volume II—Automorphic and Abelian Integrals C. L. Siegel Topics in Complex Function Theory, Volume III—Abelian Functions & Modular Functions of Several Variables J. J. Stoker Differential Geometry J. J. Stoker Water Waves: The Mathematical Theory with Applications J. J. Stoker Nonlinear Vibrations in Mechanical and Electrical Systems
Introduction to Representation Theory
Author: Pavel I. Etingof
Publisher: American Mathematical Soc.
ISBN: 0821853511
Category : Mathematics
Languages : en
Pages : 240
Book Description
Very roughly speaking, representation theory studies symmetry in linear spaces. It is a beautiful mathematical subject which has many applications, ranging from number theory and combinatorics to geometry, probability theory, quantum mechanics, and quantum field theory. The goal of this book is to give a ``holistic'' introduction to representation theory, presenting it as a unified subject which studies representations of associative algebras and treating the representation theories of groups, Lie algebras, and quivers as special cases. Using this approach, the book covers a number of standard topics in the representation theories of these structures. Theoretical material in the book is supplemented by many problems and exercises which touch upon a lot of additional topics; the more difficult exercises are provided with hints. The book is designed as a textbook for advanced undergraduate and beginning graduate students. It should be accessible to students with a strong background in linear algebra and a basic knowledge of abstract algebra.
Publisher: American Mathematical Soc.
ISBN: 0821853511
Category : Mathematics
Languages : en
Pages : 240
Book Description
Very roughly speaking, representation theory studies symmetry in linear spaces. It is a beautiful mathematical subject which has many applications, ranging from number theory and combinatorics to geometry, probability theory, quantum mechanics, and quantum field theory. The goal of this book is to give a ``holistic'' introduction to representation theory, presenting it as a unified subject which studies representations of associative algebras and treating the representation theories of groups, Lie algebras, and quivers as special cases. Using this approach, the book covers a number of standard topics in the representation theories of these structures. Theoretical material in the book is supplemented by many problems and exercises which touch upon a lot of additional topics; the more difficult exercises are provided with hints. The book is designed as a textbook for advanced undergraduate and beginning graduate students. It should be accessible to students with a strong background in linear algebra and a basic knowledge of abstract algebra.
Algebras and Representation Theory
Author: Karin Erdmann
Publisher: Springer
ISBN: 3319919989
Category : Mathematics
Languages : en
Pages : 304
Book Description
This carefully written textbook provides an accessible introduction to the representation theory of algebras, including representations of quivers. The book starts with basic topics on algebras and modules, covering fundamental results such as the Jordan-Hölder theorem on composition series, the Artin-Wedderburn theorem on the structure of semisimple algebras and the Krull-Schmidt theorem on indecomposable modules. The authors then go on to study representations of quivers in detail, leading to a complete proof of Gabriel's celebrated theorem characterizing the representation type of quivers in terms of Dynkin diagrams. Requiring only introductory courses on linear algebra and groups, rings and fields, this textbook is aimed at undergraduate students. With numerous examples illustrating abstract concepts, and including more than 200 exercises (with solutions to about a third of them), the book provides an example-driven introduction suitable for self-study and use alongside lecture courses.
Publisher: Springer
ISBN: 3319919989
Category : Mathematics
Languages : en
Pages : 304
Book Description
This carefully written textbook provides an accessible introduction to the representation theory of algebras, including representations of quivers. The book starts with basic topics on algebras and modules, covering fundamental results such as the Jordan-Hölder theorem on composition series, the Artin-Wedderburn theorem on the structure of semisimple algebras and the Krull-Schmidt theorem on indecomposable modules. The authors then go on to study representations of quivers in detail, leading to a complete proof of Gabriel's celebrated theorem characterizing the representation type of quivers in terms of Dynkin diagrams. Requiring only introductory courses on linear algebra and groups, rings and fields, this textbook is aimed at undergraduate students. With numerous examples illustrating abstract concepts, and including more than 200 exercises (with solutions to about a third of them), the book provides an example-driven introduction suitable for self-study and use alongside lecture courses.
Modular Representation Theory of Finite Groups
Author: Peter Schneider
Publisher: Springer Science & Business Media
ISBN: 1447148320
Category : Mathematics
Languages : en
Pages : 183
Book Description
Representation theory studies maps from groups into the general linear group of a finite-dimensional vector space. For finite groups the theory comes in two distinct flavours. In the 'semisimple case' (for example over the field of complex numbers) one can use character theory to completely understand the representations. This by far is not sufficient when the characteristic of the field divides the order of the group. Modular Representation Theory of finite Groups comprises this second situation. Many additional tools are needed for this case. To mention some, there is the systematic use of Grothendieck groups leading to the Cartan matrix and the decomposition matrix of the group as well as Green's direct analysis of indecomposable representations. There is also the strategy of writing the category of all representations as the direct product of certain subcategories, the so-called 'blocks' of the group. Brauer's work then establishes correspondences between the blocks of the original group and blocks of certain subgroups the philosophy being that one is thereby reduced to a simpler situation. In particular, one can measure how nonsemisimple a category a block is by the size and structure of its so-called 'defect group'. All these concepts are made explicit for the example of the special linear group of two-by-two matrices over a finite prime field. Although the presentation is strongly biased towards the module theoretic point of view an attempt is made to strike a certain balance by also showing the reader the group theoretic approach. In particular, in the case of defect groups a detailed proof of the equivalence of the two approaches is given. This book aims to familiarize students at the masters level with the basic results, tools, and techniques of a beautiful and important algebraic theory. Some basic algebra together with the semisimple case are assumed to be known, although all facts to be used are restated (without proofs) in the text. Otherwise the book is entirely self-contained.
Publisher: Springer Science & Business Media
ISBN: 1447148320
Category : Mathematics
Languages : en
Pages : 183
Book Description
Representation theory studies maps from groups into the general linear group of a finite-dimensional vector space. For finite groups the theory comes in two distinct flavours. In the 'semisimple case' (for example over the field of complex numbers) one can use character theory to completely understand the representations. This by far is not sufficient when the characteristic of the field divides the order of the group. Modular Representation Theory of finite Groups comprises this second situation. Many additional tools are needed for this case. To mention some, there is the systematic use of Grothendieck groups leading to the Cartan matrix and the decomposition matrix of the group as well as Green's direct analysis of indecomposable representations. There is also the strategy of writing the category of all representations as the direct product of certain subcategories, the so-called 'blocks' of the group. Brauer's work then establishes correspondences between the blocks of the original group and blocks of certain subgroups the philosophy being that one is thereby reduced to a simpler situation. In particular, one can measure how nonsemisimple a category a block is by the size and structure of its so-called 'defect group'. All these concepts are made explicit for the example of the special linear group of two-by-two matrices over a finite prime field. Although the presentation is strongly biased towards the module theoretic point of view an attempt is made to strike a certain balance by also showing the reader the group theoretic approach. In particular, in the case of defect groups a detailed proof of the equivalence of the two approaches is given. This book aims to familiarize students at the masters level with the basic results, tools, and techniques of a beautiful and important algebraic theory. Some basic algebra together with the semisimple case are assumed to be known, although all facts to be used are restated (without proofs) in the text. Otherwise the book is entirely self-contained.