Removing PAHs from Urban Runoff Water by Combining Ozonation, Adsorption, and Biodegradation PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Removing PAHs from Urban Runoff Water by Combining Ozonation, Adsorption, and Biodegradation PDF full book. Access full book title Removing PAHs from Urban Runoff Water by Combining Ozonation, Adsorption, and Biodegradation by Chainarong Sakulthaew. Download full books in PDF and EPUB format.

Removing PAHs from Urban Runoff Water by Combining Ozonation, Adsorption, and Biodegradation

Removing PAHs from Urban Runoff Water by Combining Ozonation, Adsorption, and Biodegradation PDF Author: Chainarong Sakulthaew
Publisher:
ISBN: 9781303042195
Category : Polycyclic aromatic hydrocarbons
Languages : en
Pages : 151

Book Description
The water quality of lakes and rivers associated with metropolitan areas is declining from increased inputs of urban runoff that contain polycyclic aromatic hydrocarbons (PAHs). Our objective was to develop a treatment technology that removes PAHs from urban runoff. We accomplished this by developing a flow-through system that uses ozone (O3) to quickly transform PAHs in a runoff stream and then removes the O3-transformed PAHs via adsorption to either activated carbon or carbon nano-onions (CNOs); adsorbed PAH products are then further biodegraded. To quantify the efficacy of this approach, 14C-labeled phenanthrene and benzo(a)pyrene, as well as a mixture of 16 PAHs were used as test compounds. These PAHs were pumped from a reservoir into a flow-through reactor that continuously ozonated the solution. Outflow from the reactor then went to a chamber that contained either activated carbon or CNOs that adsorbed the O3-treated PAHs and allow clean water to pass. By adding a microbial consortium to the CNOs following adsorption, we observed that bacteria were able to degrade the adsorbed products and release more soluble, transformed products back into solution. Control treatments confirmed that parent PAH structures were not biologically degraded following CNO adsorption and that O3-treated PAHs were not released from the CNO in the absence of bacteria. For phenanthrene, we identified diphenaldehyde as the product of ozonation and diphenaldehydehdric acid as the biological product released from the CNOs. We then compared the biodegradability of these products to the parent structures in unsaturated soil microcosms. Results showed that the parent phenanthrene structure was more biodegradable (Sigma 14CO2 released = 51%) than the transformed products (34.5 - 36.7%) but for the 5-ring benzo(a)pyrene, the products produced by ozone (22.3%) or released from the CNO following biological treatment (35.2%) were significantly more biodegradable than the parent compound (2.7%). As an alternative to using activated carbon or CNOs, we also verified that the ozonated product (diphenyldehyde) could be biologically mineralized in a bioreactor and that mineralization rates improved with acclimation of the microbial population. These results support the combined use of ozone and biological degradation as a means of removing PAHs from urban runoff.

Removing PAHs from Urban Runoff Water by Combining Ozonation, Adsorption, and Biodegradation

Removing PAHs from Urban Runoff Water by Combining Ozonation, Adsorption, and Biodegradation PDF Author: Chainarong Sakulthaew
Publisher:
ISBN: 9781303042195
Category : Polycyclic aromatic hydrocarbons
Languages : en
Pages : 151

Book Description
The water quality of lakes and rivers associated with metropolitan areas is declining from increased inputs of urban runoff that contain polycyclic aromatic hydrocarbons (PAHs). Our objective was to develop a treatment technology that removes PAHs from urban runoff. We accomplished this by developing a flow-through system that uses ozone (O3) to quickly transform PAHs in a runoff stream and then removes the O3-transformed PAHs via adsorption to either activated carbon or carbon nano-onions (CNOs); adsorbed PAH products are then further biodegraded. To quantify the efficacy of this approach, 14C-labeled phenanthrene and benzo(a)pyrene, as well as a mixture of 16 PAHs were used as test compounds. These PAHs were pumped from a reservoir into a flow-through reactor that continuously ozonated the solution. Outflow from the reactor then went to a chamber that contained either activated carbon or CNOs that adsorbed the O3-treated PAHs and allow clean water to pass. By adding a microbial consortium to the CNOs following adsorption, we observed that bacteria were able to degrade the adsorbed products and release more soluble, transformed products back into solution. Control treatments confirmed that parent PAH structures were not biologically degraded following CNO adsorption and that O3-treated PAHs were not released from the CNO in the absence of bacteria. For phenanthrene, we identified diphenaldehyde as the product of ozonation and diphenaldehydehdric acid as the biological product released from the CNOs. We then compared the biodegradability of these products to the parent structures in unsaturated soil microcosms. Results showed that the parent phenanthrene structure was more biodegradable (Sigma 14CO2 released = 51%) than the transformed products (34.5 - 36.7%) but for the 5-ring benzo(a)pyrene, the products produced by ozone (22.3%) or released from the CNO following biological treatment (35.2%) were significantly more biodegradable than the parent compound (2.7%). As an alternative to using activated carbon or CNOs, we also verified that the ozonated product (diphenyldehyde) could be biologically mineralized in a bioreactor and that mineralization rates improved with acclimation of the microbial population. These results support the combined use of ozone and biological degradation as a means of removing PAHs from urban runoff.

Pesticide Removal by Combined Ozonation and Granular Activated Carbon Filtration

Pesticide Removal by Combined Ozonation and Granular Activated Carbon Filtration PDF Author: Ervin Orlandini
Publisher: Routledge
ISBN: 1351425293
Category : Science
Languages : en
Pages : 188

Book Description
This research aimed to identify and understand mechanisms thar underlie the beneficial effect of ozonation on removal of pesticides and other micropollutants by Granular Activated Carbon (GAC) filtration. This allows optimization of the combination of these two processes, termed Biological Activated Carbon filtration. The study concluded that ozonation significantly improves removal of atrazine by GAC filtration not only due to the wellknown effect of oxidation of atrazine, but also due to the effect of partical oxidation of Background Organic Matter (BOM) present in water. Ozone-induced oxidation of BOM was found to improve adsorption of atrazine in GAC filters. Biodegradation of atrazine in these filters wasnot demonstrated. Higher GAC's adsorption capacity for atrazine and faster atrazine's mass transfer in filters with ozonated rather than non-ozonated influent were explained as due to ozonated BOM. Both can be attributed to enhanced biodegradability and reduced adsorbsbility of partially ozidated BOM compounds, resulting in their increased biodegradation and decreased adsorption in GAC filters.

Green Adsorbents for Pollutant Removal

Green Adsorbents for Pollutant Removal PDF Author: Grégorio Crini
Publisher: Springer
ISBN: 3319921118
Category : Science
Languages : en
Pages : 395

Book Description
This is the first volume on adsorption using green adsorbents and is written by international contributors who are the leading experts in the adsorption field. The first volume provides an overview of fundamentals and design of adsorption processes. For people who are new to the field, the book starts by two overview chapters presenting the principles and properties of wastewater treatment and adsorption processes. The book also provides a comprehensive source of knowledge on acid-base properties of biosorbents. It discusses fractal-like kinetic models for fluid-solid adsorption, reports on the chemical characterization of oxidized activated carbons for metal removal, and the use of magnetic biosorbents in water treatment. Furthermore, the thermodynamic properties of metals adsorption by green adsorbents, and biosorption of polycyclic aromatic hydrocarbons and organic pollutants are reviewed, and finally the recent trends and impact of nanomaterials as green adsorbent and potential catalysts for environmental applications are summarized. The audience for this book includes students, environmentalists, engineers, water scientists, civil and industrial personnel who wish to specialize in adsorption technology. Academically, this book will be of use to students in chemical and environmental engineering who wish to learn about adsorption and its fundamentals. It has also been compiled for practicing engineers who wish to know about recent developments on adsorbent materials in order to promote further research toward improving and developing newer adsorbents and processes for the efficient removal of pollutants from industrial effluents. It is hoped that the book will serve as a readable and useful presentation not only for undergraduate and postgraduate students but also for the water scientists and engineers and as a convenient reference handbook in the form of numerous recent examples and appended information.

Pesticide Removal by Combined Ozonation and Granular Activated Carbon Filtration

Pesticide Removal by Combined Ozonation and Granular Activated Carbon Filtration PDF Author: E. Orlandini
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description


Advances in Wastewater Treatment I

Advances in Wastewater Treatment I PDF Author: Vimal Gandhi
Publisher: Materials Research Forum LLC
ISBN: 1644901145
Category : Technology & Engineering
Languages : en
Pages : 262

Book Description
The book presents new materials and methods for waste water treatments; including advanced oxidation processes, membrane technologies, detection and removal of heavy metals and organic compounds, and the use of nanomaterials, low cost adsorbents and bio flocculants. Keywords: Wastewater Treatment, Organic Molecule Degradation, Bio Flocculants, Coagulants, Pyrene, Pharmaceutical Compounds, Photocatalytic Degradation, Nanocrystalline Titanium Dioxide, Arsenic Removal, Membrane Technology, Activated Charcoal, Adsorbent Derived from Egg Shells, Degradation of Polycyclic Aromatic Hydrocarbons, Colorimetric Analysis, Luminescence, Spectroscopy, Atomic Absorption, Mass Spectrometric and Biosensor Based Techniques.

The Removal of Organics from Drinking Water by Ozonation, Biodegradation, and Activated Carbon Adsorption

The Removal of Organics from Drinking Water by Ozonation, Biodegradation, and Activated Carbon Adsorption PDF Author: Fenco Consultants Limited
Publisher:
ISBN:
Category : Drinking water
Languages : en
Pages : 129

Book Description


Removal of Polycyclic Aromatic Hydrocarbons from Offshore Produced Water by Advanced Oxidation Technologies

Removal of Polycyclic Aromatic Hydrocarbons from Offshore Produced Water by Advanced Oxidation Technologies PDF Author: Jisi Zheng
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
As the largest waste stream from offshore oil and gas industry, offshore produced water contains dissolved toxic organic pollutants that are hard to be removed by conventional wastewater treatment technologies. Among those pollutants, polycyclic aromatic hydrocarbons (PAHs) are of growing concern due to their high toxicity and persistence in the marine and coastal environments. Removal of PAHs from produced water before disposal is thus essential for offshore oil and gas production. However, the offshore operation and facilities (e.g., platforms and ships) usually have many special technical and economic constraints that limit the applications of many treatment technologies. Since advanced oxidation processes (AOPs) are featured with high cost-efficiency, small footprints, and eco-friendliness which well match with the requirements of offshore operation and present a promising treatment option for offshore wastewater (e.g., produced water). However, limited research efforts have been reported in investigating AOPs' mechanisms, performance and applicability in treating offshore produced water. In order to help fill the knowledge and technical gaps, this research aimed at development of advanced oxidation technologies for removal of PAHs from offshore produced water treatment and examination of the oxidation processes and kinetics, and effluent toxicity and biodegradability. To ensure efficient, reliable, and acurate analysis results, a refined analytical method, Vortex and Shaker Assisted Liquid-liquid Microextraction (VSA-LLME), was first developed, tested and adopted in the analysis of 16 priority PAHs recommended by U.S. Environmental Protection Agency. Under the optimized condition, the enrichment factors ranged from 68 to 78. The recoveries of the method were 74 to 85%, and the limits of detection were as low as 2 to 5 ng/L. The linearity results (R2 values) for 16 PAHs were all above 0.99 with the relative standard deviations (RSD%) of 6 to 11%. This method also creatively utilized the organic constitutes in produced water as dispersive solvents to reduce the solvent consumption. Its straightforward procedure and excellent performance showed a strong potential for application in research and regulatory and industrial practice. The photolysis of 16 PAHs in offshore produced water was then thoroughly investigated in this research. The results indicated much more complex kinetics in the removal of PAHs from produced water than those in stilled water, mianly due to the complex chemical constitutions of the substrate. The experiment disclosed the unique mechanisms including direct photolysis, dynamic light screening, and radical induced organic synthesis. A novel kinetic model involving dynamic light screening was developed and approved to support the mechanism analysis, and a semi-empirical model was also established to simulate the photolysis process. The proposed mechanisms and kinetics not only helped answered some scientific questions but also showed strong practical significance for further AOP development and applications. The performance of ozonation in removing polycyclic aromatic hydrocarbons (PAHs) from offshore produced water (OPW) was studied. The experimental results showed that ozone dose had positive effect due to enhancement in ozone decomposition, and radical yield. On the other hand, the removal was suppressed at increased bubble size and pH, which may be attributed to the reduction of interfacial area as well as stronger radical scavenging effect, respectively. Microtox tests showed that the acute toxicity of OPW was reduced after ozonation, which was highly correlated with the removal of PAHs. Such reduction was inhibited at high ozone doses, possibly due to the formation of disinfection by-products via reactions with halogens. As compared to control, ozonated OPW had higher oxygen uptake and less organic residual after biodegradation, indicating more bioavailable organics were formed after ozonation. Results from this study can be used as good references for designing new or upgrading existing OPW treatment systems using ozonation. Based on the experimental results, the three major mechanisms affecting the PAHs removal through AOP treatment were proposed in the first time. Novel kinetic models based on the dynamic oxidant competitiveness was developed and validated. The model was able to simulate the oxidation processes, quantify the effects of different operational parameters. The testing result also indicated that insufficient treatment could lead to carcinogenetic by-products. On the other hand, proper advanced oxidation technologies could significantly increase biodegradability, showing strong potential of combining with conventional biological treatment in practice.

Research Investigation on the Removal of Trace Organic Compounds by Combined Ozonation and Adsorption in a Biologically Activated Carbon Process

Research Investigation on the Removal of Trace Organic Compounds by Combined Ozonation and Adsorption in a Biologically Activated Carbon Process PDF Author: Philadelphia (Pa.). Water Department
Publisher:
ISBN:
Category : Water
Languages : en
Pages :

Book Description


Ozonation of Water and Waste Water

Ozonation of Water and Waste Water PDF Author: Christiane Gottschalk
Publisher: LibreDigital
ISBN: 9783527628933
Category : Technology & Engineering
Languages : en
Pages : 378

Book Description
The leading resource on ozone technology, this book contains everything from chemical basics to technical and economic concerns. The text has been updated to include the latest developments in water treatment and industrial processes. Following an introduction, the first part looks at toxicology, reaction mechanisms and full-scale applications, while Part B covers experimental design, equipment and analytical methods, mass transfer, reaction kinetics and the application of ozone in combined processes.

The Removal of Organics from Drinking Water

The Removal of Organics from Drinking Water PDF Author: Canada. Department of National Health and Welfare
Publisher:
ISBN:
Category : Organic water pollutants
Languages : en
Pages : 129

Book Description