Author: Guang-Hong Yang
Publisher: CRC Press
ISBN: 1439835233
Category : Computers
Languages : en
Pages : 264
Book Description
More and more, the advanced technological systems of today rely on sophisticated control systems designed to assure greater levels of safe operation while optimizing performance. Rather than assuming always perfect conditions, these systems require adaptive approaches capable of coping with inevitable system component faults. Conventional feedback control designs do not offer that capability and can result in unsatisfactory performance or even instability, which is totally unacceptable in complex systems such as aircraft, spacecraft, and nuclear power plants where safety is a paramount concern. Reliable Control and Filtering of Linear Systems with Adaptive Mechanisms presents recent research results that are advancing the field. It shows how adaptive mechanisms can be successfully introduced into the traditional reliable control/filtering, so that, based on the online estimation of eventual faults, the proposed adaptive reliable controller/filter parameters are updated automatically to compensate for any fault effects. Presenting a new method for fault-tolerant control (FTC) in the context of existing research, this uniquely cohesive volume, coauthored by two leading researchers — Focuses on the issues of reliable control/filtering in the framework of indirect adaptive method and LMI techniques Starts from the development and main research methods in FTC to offer a systematic presentation of new methods for adaptive reliable control/filtering of linear systems Explains the principles behind adaptive designs for closed-loop systems in normal operation as well as those that account for both actuator and sensor failures Presents rigorous mathematical analysis of control methods as well as easy-to-implement algorithms Includes practical case studies derived from the aerospace industry including simulation results for the F-16 The authors also extend the design idea from linear systems to linear time-delay systems via both memory and memory-less controllers. Moreover, some more recent results for the corresponding adaptive reliable control against actuator saturation are included. Ultimately, this remarkably practical resource, offers design approaches and guidelines that researchers can readily employ in the design of advanced FTC techniques offering improved reliability, maintainability, and survivability.
Reliable Control and Filtering of Linear Systems with Adaptive Mechanisms
Author: Guang-Hong Yang
Publisher: CRC Press
ISBN: 1439835233
Category : Computers
Languages : en
Pages : 264
Book Description
More and more, the advanced technological systems of today rely on sophisticated control systems designed to assure greater levels of safe operation while optimizing performance. Rather than assuming always perfect conditions, these systems require adaptive approaches capable of coping with inevitable system component faults. Conventional feedback control designs do not offer that capability and can result in unsatisfactory performance or even instability, which is totally unacceptable in complex systems such as aircraft, spacecraft, and nuclear power plants where safety is a paramount concern. Reliable Control and Filtering of Linear Systems with Adaptive Mechanisms presents recent research results that are advancing the field. It shows how adaptive mechanisms can be successfully introduced into the traditional reliable control/filtering, so that, based on the online estimation of eventual faults, the proposed adaptive reliable controller/filter parameters are updated automatically to compensate for any fault effects. Presenting a new method for fault-tolerant control (FTC) in the context of existing research, this uniquely cohesive volume, coauthored by two leading researchers — Focuses on the issues of reliable control/filtering in the framework of indirect adaptive method and LMI techniques Starts from the development and main research methods in FTC to offer a systematic presentation of new methods for adaptive reliable control/filtering of linear systems Explains the principles behind adaptive designs for closed-loop systems in normal operation as well as those that account for both actuator and sensor failures Presents rigorous mathematical analysis of control methods as well as easy-to-implement algorithms Includes practical case studies derived from the aerospace industry including simulation results for the F-16 The authors also extend the design idea from linear systems to linear time-delay systems via both memory and memory-less controllers. Moreover, some more recent results for the corresponding adaptive reliable control against actuator saturation are included. Ultimately, this remarkably practical resource, offers design approaches and guidelines that researchers can readily employ in the design of advanced FTC techniques offering improved reliability, maintainability, and survivability.
Publisher: CRC Press
ISBN: 1439835233
Category : Computers
Languages : en
Pages : 264
Book Description
More and more, the advanced technological systems of today rely on sophisticated control systems designed to assure greater levels of safe operation while optimizing performance. Rather than assuming always perfect conditions, these systems require adaptive approaches capable of coping with inevitable system component faults. Conventional feedback control designs do not offer that capability and can result in unsatisfactory performance or even instability, which is totally unacceptable in complex systems such as aircraft, spacecraft, and nuclear power plants where safety is a paramount concern. Reliable Control and Filtering of Linear Systems with Adaptive Mechanisms presents recent research results that are advancing the field. It shows how adaptive mechanisms can be successfully introduced into the traditional reliable control/filtering, so that, based on the online estimation of eventual faults, the proposed adaptive reliable controller/filter parameters are updated automatically to compensate for any fault effects. Presenting a new method for fault-tolerant control (FTC) in the context of existing research, this uniquely cohesive volume, coauthored by two leading researchers — Focuses on the issues of reliable control/filtering in the framework of indirect adaptive method and LMI techniques Starts from the development and main research methods in FTC to offer a systematic presentation of new methods for adaptive reliable control/filtering of linear systems Explains the principles behind adaptive designs for closed-loop systems in normal operation as well as those that account for both actuator and sensor failures Presents rigorous mathematical analysis of control methods as well as easy-to-implement algorithms Includes practical case studies derived from the aerospace industry including simulation results for the F-16 The authors also extend the design idea from linear systems to linear time-delay systems via both memory and memory-less controllers. Moreover, some more recent results for the corresponding adaptive reliable control against actuator saturation are included. Ultimately, this remarkably practical resource, offers design approaches and guidelines that researchers can readily employ in the design of advanced FTC techniques offering improved reliability, maintainability, and survivability.
Linear Control System Analysis and Design with MATLAB
Author: Constantine H. Houpis
Publisher: CRC Press
ISBN: 1466504277
Category : Technology & Engineering
Languages : en
Pages : 712
Book Description
This book uses numerous in-depth explanations, diagrams, calculations, and tables to provide an intensive overview of modern control theory and control system design. Mathematics is kept to a minimum, and engineering applications are stressed throughout. Completely updated and packed with student-friendly features, the sixth edition presents a range of updated examples using MATLAB, as well as an appendix listing MATLAB functions for optimizing control system analysis and design. Over 75 percent of the problems presented in the previous edition have been revised or replaced.
Publisher: CRC Press
ISBN: 1466504277
Category : Technology & Engineering
Languages : en
Pages : 712
Book Description
This book uses numerous in-depth explanations, diagrams, calculations, and tables to provide an intensive overview of modern control theory and control system design. Mathematics is kept to a minimum, and engineering applications are stressed throughout. Completely updated and packed with student-friendly features, the sixth edition presents a range of updated examples using MATLAB, as well as an appendix listing MATLAB functions for optimizing control system analysis and design. Over 75 percent of the problems presented in the previous edition have been revised or replaced.
End-to-End Adaptive Congestion Control in TCP/IP Networks
Author: Christos N. Houmkozlis
Publisher: CRC Press
ISBN: 143984058X
Category : Computers
Languages : en
Pages : 332
Book Description
Establishing adaptive control as an alternative framework to design and analyze Internet congestion controllers, End-to-End Adaptive Congestion Control in TCP/IP Networks employs a rigorously mathematical approach coupled with a lucid writing style to provide extensive background and introductory material on dynamic systems stability and neural network approximation; alongside future internet requests for congestion control architectures. Designed to operate under extreme heterogeneous, dynamic, and time-varying network conditions, the developed controllers must also handle network modeling structural uncertainties and uncontrolled traffic flows acting as external perturbations. The book also presents a parallel examination of specific adaptive congestion control, NNRC, using adaptive control and approximation theory, as well as extensions toward cooperation of NNRC with application QoS control. Features: Uses adaptive control techniques for congestion control in packet switching networks Employs a rigorously mathematical approach with lucid writing style Presents simulation experiments illustrating significant operational aspects of the method; including scalability, dynamic behavior, wireless networks, and fairness Applies to networked applications in the music industry, computers, image trading, and virtual groups by techniques such as peer-to-peer, file sharing, and internet telephony Contains working examples to highlight and clarify key attributes of the congestion control algorithms presented Drawing on the recent research efforts of the authors, the book offers numerous tables and figures to increase clarity and summarize the algorithms that implement various NNRC building blocks. Extensive simulations and comparison tests analyze its behavior and measure its performance through monitoring vital network quality metrics. Divided into three parts, the book offers a review of computer networks and congestion control, presents an adaptive congestion control framework as an alternative to optimization methods, and provides appendices related to dynamic systems through universal neural network approximators.
Publisher: CRC Press
ISBN: 143984058X
Category : Computers
Languages : en
Pages : 332
Book Description
Establishing adaptive control as an alternative framework to design and analyze Internet congestion controllers, End-to-End Adaptive Congestion Control in TCP/IP Networks employs a rigorously mathematical approach coupled with a lucid writing style to provide extensive background and introductory material on dynamic systems stability and neural network approximation; alongside future internet requests for congestion control architectures. Designed to operate under extreme heterogeneous, dynamic, and time-varying network conditions, the developed controllers must also handle network modeling structural uncertainties and uncontrolled traffic flows acting as external perturbations. The book also presents a parallel examination of specific adaptive congestion control, NNRC, using adaptive control and approximation theory, as well as extensions toward cooperation of NNRC with application QoS control. Features: Uses adaptive control techniques for congestion control in packet switching networks Employs a rigorously mathematical approach with lucid writing style Presents simulation experiments illustrating significant operational aspects of the method; including scalability, dynamic behavior, wireless networks, and fairness Applies to networked applications in the music industry, computers, image trading, and virtual groups by techniques such as peer-to-peer, file sharing, and internet telephony Contains working examples to highlight and clarify key attributes of the congestion control algorithms presented Drawing on the recent research efforts of the authors, the book offers numerous tables and figures to increase clarity and summarize the algorithms that implement various NNRC building blocks. Extensive simulations and comparison tests analyze its behavior and measure its performance through monitoring vital network quality metrics. Divided into three parts, the book offers a review of computer networks and congestion control, presents an adaptive congestion control framework as an alternative to optimization methods, and provides appendices related to dynamic systems through universal neural network approximators.
Optimal and Robust Scheduling for Networked Control Systems
Author: Stefano Longo
Publisher: CRC Press
ISBN: 1351831879
Category : Technology & Engineering
Languages : en
Pages : 280
Book Description
Optimal and Robust Scheduling for Networked Control Systems tackles the problem of integrating system components—controllers, sensors, and actuators—in a networked control system. It is common practice in industry to solve such problems heuristically, because the few theoretical results available are not comprehensive and cannot be readily applied by practitioners. This book offers a solution to the deterministic scheduling problem that is based on rigorous control theoretical tools but also addresses practical implementation issues. Helping to bridge the gap between control theory and computer science, it suggests that the consideration of communication constraints at the design stage will significantly improve the performance of the control system. Technical Results, Design Techniques, and Practical Applications The book brings together well-known measures for robust performance as well as fast stochastic algorithms to assist designers in selecting the best network configuration and guaranteeing the speed of offline optimization. The authors propose a unifying framework for modelling NCSs with time-triggered communication and present technical results. They also introduce design techniques, including for the codesign of a controller and communication sequence and for the robust design of a communication sequence for a given controller. Case studies explore the use of the FlexRay TDMA and time-triggered control area network (CAN) protocols in an automotive control system. Practical Solutions to Your Time-Triggered Communication Problems This unique book develops ready-to-use engineering tools for large-scale control system integration with a focus on robustness and performance. It emphasizes techniques that are directly applicable to time-triggered communication problems in the automotive industry and in avionics, robotics, and automated manufacturing.
Publisher: CRC Press
ISBN: 1351831879
Category : Technology & Engineering
Languages : en
Pages : 280
Book Description
Optimal and Robust Scheduling for Networked Control Systems tackles the problem of integrating system components—controllers, sensors, and actuators—in a networked control system. It is common practice in industry to solve such problems heuristically, because the few theoretical results available are not comprehensive and cannot be readily applied by practitioners. This book offers a solution to the deterministic scheduling problem that is based on rigorous control theoretical tools but also addresses practical implementation issues. Helping to bridge the gap between control theory and computer science, it suggests that the consideration of communication constraints at the design stage will significantly improve the performance of the control system. Technical Results, Design Techniques, and Practical Applications The book brings together well-known measures for robust performance as well as fast stochastic algorithms to assist designers in selecting the best network configuration and guaranteeing the speed of offline optimization. The authors propose a unifying framework for modelling NCSs with time-triggered communication and present technical results. They also introduce design techniques, including for the codesign of a controller and communication sequence and for the robust design of a communication sequence for a given controller. Case studies explore the use of the FlexRay TDMA and time-triggered control area network (CAN) protocols in an automotive control system. Practical Solutions to Your Time-Triggered Communication Problems This unique book develops ready-to-use engineering tools for large-scale control system integration with a focus on robustness and performance. It emphasizes techniques that are directly applicable to time-triggered communication problems in the automotive industry and in avionics, robotics, and automated manufacturing.
Cooperative Control of Multi-Agent Systems
Author: Zhongkui Li
Publisher: CRC Press
ISBN: 1466569972
Category : Computers
Languages : en
Pages : 262
Book Description
Distributed controller design is generally a challenging task, especially for multi-agent systems with complex dynamics, due to the interconnected effect of the agent dynamics, the interaction graph among agents, and the cooperative control laws. Cooperative Control of Multi-Agent Systems: A Consensus Region Approach offers a systematic framework for designing distributed controllers for multi-agent systems with general linear agent dynamics, linear agent dynamics with uncertainties, and Lipschitz nonlinear agent dynamics. Beginning with an introduction to cooperative control and graph theory, this monograph: Explores the consensus control problem for continuous-time and discrete-time linear multi-agent systems Studies the H∞ and H2 consensus problems for linear multi-agent systems subject to external disturbances Designs distributed adaptive consensus protocols for continuous-time linear multi-agent systems Considers the distributed tracking control problem for linear multi-agent systems with a leader of nonzero control input Examines the distributed containment control problem for the case with multiple leaders Covers the robust cooperative control problem for multi-agent systems with linear nominal agent dynamics subject to heterogeneous matching uncertainties Discusses the global consensus problem for Lipschitz nonlinear multi-agent systems Cooperative Control of Multi-Agent Systems: A Consensus Region Approach provides a novel approach to designing distributed cooperative protocols for multi-agent systems with complex dynamics. The proposed consensus region decouples the design of the feedback gain matrices of the cooperative protocols from the communication graph and serves as a measure for the robustness of the protocols to variations of the communication graph. By exploiting the decoupling feature, adaptive cooperative protocols are presented that can be designed and implemented in a fully distributed fashion.
Publisher: CRC Press
ISBN: 1466569972
Category : Computers
Languages : en
Pages : 262
Book Description
Distributed controller design is generally a challenging task, especially for multi-agent systems with complex dynamics, due to the interconnected effect of the agent dynamics, the interaction graph among agents, and the cooperative control laws. Cooperative Control of Multi-Agent Systems: A Consensus Region Approach offers a systematic framework for designing distributed controllers for multi-agent systems with general linear agent dynamics, linear agent dynamics with uncertainties, and Lipschitz nonlinear agent dynamics. Beginning with an introduction to cooperative control and graph theory, this monograph: Explores the consensus control problem for continuous-time and discrete-time linear multi-agent systems Studies the H∞ and H2 consensus problems for linear multi-agent systems subject to external disturbances Designs distributed adaptive consensus protocols for continuous-time linear multi-agent systems Considers the distributed tracking control problem for linear multi-agent systems with a leader of nonzero control input Examines the distributed containment control problem for the case with multiple leaders Covers the robust cooperative control problem for multi-agent systems with linear nominal agent dynamics subject to heterogeneous matching uncertainties Discusses the global consensus problem for Lipschitz nonlinear multi-agent systems Cooperative Control of Multi-Agent Systems: A Consensus Region Approach provides a novel approach to designing distributed cooperative protocols for multi-agent systems with complex dynamics. The proposed consensus region decouples the design of the feedback gain matrices of the cooperative protocols from the communication graph and serves as a measure for the robustness of the protocols to variations of the communication graph. By exploiting the decoupling feature, adaptive cooperative protocols are presented that can be designed and implemented in a fully distributed fashion.
Modeling and Control for Micro/Nano Devices and Systems
Author: Ning Xi
Publisher: CRC Press
ISBN: 1466554061
Category : Mathematics
Languages : en
Pages : 175
Book Description
Micro/nano-scale engineering—especially the design and implementation of ultra-fast and ultra-scale energy devices, sensors, and cellular and molecular systems—remains a daunting challenge. Modeling and control has played an essential role in many technological breakthroughs throughout the course of history. Therefore, the need for a practical guide to modeling and control for micro/nano-scale devices and systems has emerged. The first edited volume to address this rapidly growing field, Modeling and Control for Micro/Nano Devices and Systems gives control engineers, lab managers, high-tech researchers, and graduate students easy access to the expert contributors’ cutting-edge knowledge of micro/nanotechnology, energy, and bio-systems. The editors offer an integrated view from theory to practice, covering diverse topics ranging from micro/nano-scale sensors to energy devices and control of biology systems in cellular and molecular levels. The book also features numerous case studies for modeling of micro/nano devices and systems, and explains how the models can be used for control and optimization purposes. Readers benefit from learning the latest modeling techniques for micro/nano-scale devices and systems, and then applying those techniques to their own research and development efforts.
Publisher: CRC Press
ISBN: 1466554061
Category : Mathematics
Languages : en
Pages : 175
Book Description
Micro/nano-scale engineering—especially the design and implementation of ultra-fast and ultra-scale energy devices, sensors, and cellular and molecular systems—remains a daunting challenge. Modeling and control has played an essential role in many technological breakthroughs throughout the course of history. Therefore, the need for a practical guide to modeling and control for micro/nano-scale devices and systems has emerged. The first edited volume to address this rapidly growing field, Modeling and Control for Micro/Nano Devices and Systems gives control engineers, lab managers, high-tech researchers, and graduate students easy access to the expert contributors’ cutting-edge knowledge of micro/nanotechnology, energy, and bio-systems. The editors offer an integrated view from theory to practice, covering diverse topics ranging from micro/nano-scale sensors to energy devices and control of biology systems in cellular and molecular levels. The book also features numerous case studies for modeling of micro/nano devices and systems, and explains how the models can be used for control and optimization purposes. Readers benefit from learning the latest modeling techniques for micro/nano-scale devices and systems, and then applying those techniques to their own research and development efforts.
Discrete-Time Recurrent Neural Control
Author: Edgar N. Sanchez
Publisher: CRC Press
ISBN: 1351377434
Category : Technology & Engineering
Languages : en
Pages : 292
Book Description
The book presents recent advances in the theory of neural control for discrete-time nonlinear systems with multiple inputs and multiple outputs. The simulation results that appear in each chapter include rigorous mathematical analyses, based on the Lyapunov approach, to establish its properties. The book contains two sections: the first focuses on the analyses of control techniques; the second is dedicated to illustrating results of real-time applications. It also provides solutions for the output trajectory tracking problem of unknown nonlinear systems based on sliding modes and inverse optimal control scheme. "This book on Discrete-time Recurrent Neural Control is unique in the literature, with new knowledge and information about the new technique of recurrent neural control especially for discrete-time systems. The book is well organized and clearly presented. It will be welcome by a wide range of researchers in science and engineering, especially graduate students and junior researchers who want to learn the new notion of recurrent neural control. I believe it will have a good market. It is an excellent book after all." — Guanrong Chen, City University of Hong Kong "This book includes very relevant topics, about neural control. In these days, Artificial Neural Networks have been recovering their relevance and well-stablished importance, this due to its great capacity to process big amounts of data. Artificial Neural Networks development always is related to technological advancements; therefore, it is not a surprise that now we are being witnesses of this new era in Artificial Neural Networks, however most of the developments in this research area only focuses on applicability of the proposed schemes. However, Edgar N. Sanchez author of this book does not lose focus and include both important applications as well as a deep theoretical analysis of Artificial Neural Networks to control discrete-time nonlinear systems. It is important to remark that first, the considered Artificial Neural Networks are development in discrete-time this simplify its implementation in real-time; secondly, the proposed applications ranging from modelling of unknown discrete-time on linear systems to control electrical machines with an emphasize to renewable energy systems. However, its applications are not limited to these kind of systems, due to their theoretical foundation it can be applicable to a large class of nonlinear systems. All of these is supported by the solid research done by the author." — Alma Y. Alanis, University of Guadalajara, Mexico "This book discusses in detail; how neural networks can be used for optimal as well as robust control design. Design of neural network controllers for real time applications such as induction motors, boost converters, inverted pendulum and doubly fed induction generators has also been carried out which gives the book an edge over other similar titles. This book will be an asset for the novice to the experienced ones." — Rajesh Joseph Abraham, Indian Institute of Space Science & Technology, Thiruvananthapuram, India
Publisher: CRC Press
ISBN: 1351377434
Category : Technology & Engineering
Languages : en
Pages : 292
Book Description
The book presents recent advances in the theory of neural control for discrete-time nonlinear systems with multiple inputs and multiple outputs. The simulation results that appear in each chapter include rigorous mathematical analyses, based on the Lyapunov approach, to establish its properties. The book contains two sections: the first focuses on the analyses of control techniques; the second is dedicated to illustrating results of real-time applications. It also provides solutions for the output trajectory tracking problem of unknown nonlinear systems based on sliding modes and inverse optimal control scheme. "This book on Discrete-time Recurrent Neural Control is unique in the literature, with new knowledge and information about the new technique of recurrent neural control especially for discrete-time systems. The book is well organized and clearly presented. It will be welcome by a wide range of researchers in science and engineering, especially graduate students and junior researchers who want to learn the new notion of recurrent neural control. I believe it will have a good market. It is an excellent book after all." — Guanrong Chen, City University of Hong Kong "This book includes very relevant topics, about neural control. In these days, Artificial Neural Networks have been recovering their relevance and well-stablished importance, this due to its great capacity to process big amounts of data. Artificial Neural Networks development always is related to technological advancements; therefore, it is not a surprise that now we are being witnesses of this new era in Artificial Neural Networks, however most of the developments in this research area only focuses on applicability of the proposed schemes. However, Edgar N. Sanchez author of this book does not lose focus and include both important applications as well as a deep theoretical analysis of Artificial Neural Networks to control discrete-time nonlinear systems. It is important to remark that first, the considered Artificial Neural Networks are development in discrete-time this simplify its implementation in real-time; secondly, the proposed applications ranging from modelling of unknown discrete-time on linear systems to control electrical machines with an emphasize to renewable energy systems. However, its applications are not limited to these kind of systems, due to their theoretical foundation it can be applicable to a large class of nonlinear systems. All of these is supported by the solid research done by the author." — Alma Y. Alanis, University of Guadalajara, Mexico "This book discusses in detail; how neural networks can be used for optimal as well as robust control design. Design of neural network controllers for real time applications such as induction motors, boost converters, inverted pendulum and doubly fed induction generators has also been carried out which gives the book an edge over other similar titles. This book will be an asset for the novice to the experienced ones." — Rajesh Joseph Abraham, Indian Institute of Space Science & Technology, Thiruvananthapuram, India
Fundamentals in Modeling and Control of Mobile Manipulators
Author: Zhijun Li
Publisher: CRC Press
ISBN: 1466580429
Category : Technology & Engineering
Languages : en
Pages : 292
Book Description
Mobile manipulators combine the advantages of mobile platforms and robotic arms, extending their operational range and functionality to large spaces and remote, demanding, and/or dangerous environments. They also bring complexity and difficulty in dynamic modeling and control system design.
Publisher: CRC Press
ISBN: 1466580429
Category : Technology & Engineering
Languages : en
Pages : 292
Book Description
Mobile manipulators combine the advantages of mobile platforms and robotic arms, extending their operational range and functionality to large spaces and remote, demanding, and/or dangerous environments. They also bring complexity and difficulty in dynamic modeling and control system design.
Anti-Disturbance Control for Systems with Multiple Disturbances
Author: Lei Guo
Publisher: CRC Press
ISBN: 1466587474
Category : Technology & Engineering
Languages : en
Pages : 332
Book Description
Developing the essential theory for architecting and tackling issues faced during complex realistic engineering problems, this volume focuses on enhanced anti-disturbance control and filtering theory and applications. The book specifically addresses the novel disturbance observer based control (DOBC) methodologies for uncertain and nonlinear systems in time domain. It also examines novel anti-disturbance control and filtering with the composite hierarchical architecture to enhance control and filtering for the complex control systems with multiple disturbances. The book provides application examples, including flight control, robotic system, altitude control, and initial alignment to show how to use the theoretical methods in engineering
Publisher: CRC Press
ISBN: 1466587474
Category : Technology & Engineering
Languages : en
Pages : 332
Book Description
Developing the essential theory for architecting and tackling issues faced during complex realistic engineering problems, this volume focuses on enhanced anti-disturbance control and filtering theory and applications. The book specifically addresses the novel disturbance observer based control (DOBC) methodologies for uncertain and nonlinear systems in time domain. It also examines novel anti-disturbance control and filtering with the composite hierarchical architecture to enhance control and filtering for the complex control systems with multiple disturbances. The book provides application examples, including flight control, robotic system, altitude control, and initial alignment to show how to use the theoretical methods in engineering
Tensor Product Model Transformation in Polytopic Model-Based Control
Author: Péter Baranyi
Publisher: CRC Press
ISBN: 1439818177
Category : Technology & Engineering
Languages : en
Pages : 262
Book Description
Tensor Product Model Transformation in Polytopic Model-Based Control offers a new perspective of control system design. Instead of relying solely on the formulation of more effective LMIs, which is the widely adopted approach in existing LMI-related studies, this cutting-edge book calls for a systematic modification and reshaping of the polytopic convex hull to achieve enhanced performance. Varying the convexity of the resulting TP canonical form is a key new feature of the approach. The book concentrates on reducing analytical derivations in the design process, echoing the recent paradigm shift on the acceptance of numerical solution as a valid form of output to control system problems. The salient features of the book include: Presents a new HOSVD-based canonical representation for (qLPV) models that enables trade-offs between approximation accuracy and computation complexity Supports a conceptually new control design methodology by proposing TP model transformation that offers a straightforward way of manipulating different types of convexity to appear in polytopic representation Introduces a numerical transformation that has the advantage of readily accommodating models described by non-conventional modeling and identification approaches, such as neural networks and fuzzy rules Presents a number of practical examples to demonstrate the application of the approach to generate control system design for complex (qLPV) systems and multiple control objectives. The authors’ approach is based on an extended version of singular value decomposition applicable to hyperdimensional tensors. Under the approach, trade-offs between approximation accuracy and computation complexity can be performed through the singular values to be retained in the process. The use of LMIs enables the incorporation of multiple performance objectives into the control design problem and assurance of a solution via convex optimization if feasible. Tensor Product Model Transformation in Polytopic Model-Based Control includes examples and incorporates MATLAB® Toolbox TPtool. It provides a reference guide for graduate students, researchers, engineers, and practitioners who are dealing with nonlinear systems control applications.
Publisher: CRC Press
ISBN: 1439818177
Category : Technology & Engineering
Languages : en
Pages : 262
Book Description
Tensor Product Model Transformation in Polytopic Model-Based Control offers a new perspective of control system design. Instead of relying solely on the formulation of more effective LMIs, which is the widely adopted approach in existing LMI-related studies, this cutting-edge book calls for a systematic modification and reshaping of the polytopic convex hull to achieve enhanced performance. Varying the convexity of the resulting TP canonical form is a key new feature of the approach. The book concentrates on reducing analytical derivations in the design process, echoing the recent paradigm shift on the acceptance of numerical solution as a valid form of output to control system problems. The salient features of the book include: Presents a new HOSVD-based canonical representation for (qLPV) models that enables trade-offs between approximation accuracy and computation complexity Supports a conceptually new control design methodology by proposing TP model transformation that offers a straightforward way of manipulating different types of convexity to appear in polytopic representation Introduces a numerical transformation that has the advantage of readily accommodating models described by non-conventional modeling and identification approaches, such as neural networks and fuzzy rules Presents a number of practical examples to demonstrate the application of the approach to generate control system design for complex (qLPV) systems and multiple control objectives. The authors’ approach is based on an extended version of singular value decomposition applicable to hyperdimensional tensors. Under the approach, trade-offs between approximation accuracy and computation complexity can be performed through the singular values to be retained in the process. The use of LMIs enables the incorporation of multiple performance objectives into the control design problem and assurance of a solution via convex optimization if feasible. Tensor Product Model Transformation in Polytopic Model-Based Control includes examples and incorporates MATLAB® Toolbox TPtool. It provides a reference guide for graduate students, researchers, engineers, and practitioners who are dealing with nonlinear systems control applications.