Reliability of High Mobility SiGe Channel MOSFETs for Future CMOS Applications PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Reliability of High Mobility SiGe Channel MOSFETs for Future CMOS Applications PDF full book. Access full book title Reliability of High Mobility SiGe Channel MOSFETs for Future CMOS Applications by Jacopo Franco. Download full books in PDF and EPUB format.

Reliability of High Mobility SiGe Channel MOSFETs for Future CMOS Applications

Reliability of High Mobility SiGe Channel MOSFETs for Future CMOS Applications PDF Author: Jacopo Franco
Publisher: Springer Science & Business Media
ISBN: 9400776632
Category : Technology & Engineering
Languages : en
Pages : 203

Book Description
Due to the ever increasing electric fields in scaled CMOS devices, reliability is becoming a showstopper for further scaled technology nodes. Although several groups have already demonstrated functional Si channel devices with aggressively scaled Equivalent Oxide Thickness (EOT) down to 5Å, a 10 year reliable device operation cannot be guaranteed anymore due to severe Negative Bias Temperature Instability. This book focuses on the reliability of the novel (Si)Ge channel quantum well pMOSFET technology. This technology is being considered for possible implementation in next CMOS technology nodes, thanks to its benefit in terms of carrier mobility and device threshold voltage tuning. We observe that it also opens a degree of freedom for device reliability optimization. By properly tuning the device gate stack, sufficiently reliable ultra-thin EOT devices with a 10 years lifetime at operating conditions are demonstrated. The extensive experimental datasets collected on a variety of processed 300mm wafers and presented here show the reliability improvement to be process - and architecture-independent and, as such, readily transferable to advanced device architectures as Tri-Gate (finFET) devices. We propose a physical model to understand the intrinsically superior reliability of the MOS system consisting of a Ge-based channel and a SiO2/HfO2 dielectric stack. The improved reliability properties here discussed strongly support (Si)Ge technology as a clear frontrunner for future CMOS technology nodes.

Reliability of High Mobility SiGe Channel MOSFETs for Future CMOS Applications

Reliability of High Mobility SiGe Channel MOSFETs for Future CMOS Applications PDF Author: Jacopo Franco
Publisher: Springer Science & Business Media
ISBN: 9400776632
Category : Technology & Engineering
Languages : en
Pages : 203

Book Description
Due to the ever increasing electric fields in scaled CMOS devices, reliability is becoming a showstopper for further scaled technology nodes. Although several groups have already demonstrated functional Si channel devices with aggressively scaled Equivalent Oxide Thickness (EOT) down to 5Å, a 10 year reliable device operation cannot be guaranteed anymore due to severe Negative Bias Temperature Instability. This book focuses on the reliability of the novel (Si)Ge channel quantum well pMOSFET technology. This technology is being considered for possible implementation in next CMOS technology nodes, thanks to its benefit in terms of carrier mobility and device threshold voltage tuning. We observe that it also opens a degree of freedom for device reliability optimization. By properly tuning the device gate stack, sufficiently reliable ultra-thin EOT devices with a 10 years lifetime at operating conditions are demonstrated. The extensive experimental datasets collected on a variety of processed 300mm wafers and presented here show the reliability improvement to be process - and architecture-independent and, as such, readily transferable to advanced device architectures as Tri-Gate (finFET) devices. We propose a physical model to understand the intrinsically superior reliability of the MOS system consisting of a Ge-based channel and a SiO2/HfO2 dielectric stack. The improved reliability properties here discussed strongly support (Si)Ge technology as a clear frontrunner for future CMOS technology nodes.

Interface-engineered Ge MOSFETs for Future High Performance CMOS Applications

Interface-engineered Ge MOSFETs for Future High Performance CMOS Applications PDF Author: Duygu Kuzum
Publisher: Stanford University
ISBN:
Category :
Languages : en
Pages : 159

Book Description
As the semiconductor industry approaches the limits of traditional silicon CMOS scaling, introduction of performance boosters like novel materials and innovative device structures has become necessary for the future of CMOS. High mobility materials are being considered to replace Si in the channel to achieve higher drive currents and switching speeds. Ge has particularly become of great interest as a channel material, owing to its high bulk hole and electron mobilities. However, replacement of Si channel by Ge requires several critical issues to be addressed in Ge MOS technology. High quality gate dielectric for surface passivation, low parasitic source/drain resistance and performance improvement in Ge NMOS are among the major challenges in realizing Ge CMOS. Detailed characterization of gate dielectric/channel interface and a deeper understanding of mobility degradation mechanisms are needed to address the Ge NMOS performance problem and to improve PMOS performance. In the first part of this dissertation, the electrical characterization results on Ge NMOS and PMOS devices fabricated with GeON gate dielectric are presented. Carrier scattering mechanisms are studied through low temperature mobility measurements. For the first time, the effect of substrate crystallographic orientation on inversion electron and hole mobilities is investigated. Direct formation of a high-k dielectric on Ge has not given good results in the past. A good quality interface layer is required before the deposition of a high-K dielectric. In the second part of this dissertation, ozone-oxidation process is introduced to engineer Ge/insulator interface. Electrical and structural characterizations and stability analysis are carried out and high quality Ge/dielectric interface with low interface trap density is demonstrated. Detailed extraction of interface trap density distribution across the bandgap and close to band edges of Ge, using low temperature conductance and capacitance measurements is presented. Ge N-MOSFETs have exhibited poor drive currents and low mobility, as reported by several different research groups worldwide. In spite of the increasing interest in Ge, the major mechanisms behind poor Ge NMOS performance have not been completely understood yet. In the last part of this dissertation, the results on Ge NMOS devices fabricated with the ozone-oxidation and the low temperature source/drain activation processes are discussed. These devices achieve the highest electron mobility to-date, about 1.5 times the universal Si mobility. Detailed interface characterizations, trapping analyses and gated Hall device measurements are performed to identify the mechanisms behind poor Ge NMOS performance in the past.

ISTFA 2018: Proceedings from the 44th International Symposium for Testing and Failure Analysis

ISTFA 2018: Proceedings from the 44th International Symposium for Testing and Failure Analysis PDF Author:
Publisher: ASM International
ISBN: 1627080996
Category :
Languages : en
Pages :

Book Description
The International Symposium for Testing and Failure Analysis (ISTFA) 2018 is co-located with the International Test Conference (ITC) 2018, October 28 to November 1, in Phoenix, Arizona, USA at the Phoenix Convention Center. The theme for the November 2018 conference is "Failures Worth Analyzing." While technology advances fast and the market demands the latest and the greatest, successful companies strive to stay competitive and remain profitable.

Process Integration and Performance Evaluation of Ge-based Quantum Well Channel MOSFETs for Sub-22nm Node Digital CMOS Logic Technology

Process Integration and Performance Evaluation of Ge-based Quantum Well Channel MOSFETs for Sub-22nm Node Digital CMOS Logic Technology PDF Author: Se-Hoon Lee
Publisher:
ISBN:
Category :
Languages : en
Pages : 320

Book Description
Since metal-oxide-semiconductor (MOS) device was first reported around 1959 and utilized for integrated circuits in 1961, complementary MOS technology has become the mainstream of semiconductor industry. Its performance has been improved based on scaling of dimensions of MOS field-effect-transistors (MOSFET) in accordance with Moore's law, which states that the density of MOSFETs due to scaling approximately doubles every two years. Entering into sub-100nm regime caused a lot of challenges. Traditional way of scaling no longer provided performance enhancement of individual MOSFETs. Increased channel doping which is required to prevent degradation of device electrostatics from short channel effects caused carrier mobility degradation. New inventions needed to be incorporated to sustain performance enhancement trend with scaling. Implementation of process induced strained Si technology allowed mobility enhancement, and high-K/metal gate instead of conventional poly-Si/SiO2 allowed continuing electrical gate oxide thickness scaling, hence extending the life span of Moore's law. As we are now moving toward 22nm logic technology and below, new concerns have been rapidly aroused. Controlling power consumption and performance variability are becoming as important as developing scaled devices with enhanced performance. Expandability of strained-Si channel technology via process induced strain also faces increasing complexity from ever tighter gate pitch and difficulties in controlling defect level with the channel stress enhancement techniques. At the same time, long-lasting planar MOSFET architecture also faces serious challenges due to the limits of controlling short channel effects. New paradigms and pathways for future technology seems to be required. As a result, new material sets, new device architectures and concepts are being vigorously explored in the literature. These new trends can be categorized into three groups: MOSFET structure with (non-Si) high mobility channel materials, advanced (non-planar) MOSFET structures, and MOSFET-type structures with new device operation concepts such as tunneling FETs. This dissertation presents research on high mobility channel MOSFET structures (planar and non-planar) using group IV material (mainly SiGe) for enhanced performance and reduced operating power. This work especially focuses on improving the performance of short channel device performance of SiGe channel pMOSFETs which has long been researched yet clearly demonstrated in literature only recently. To reach the goal, novel processing technologies such as millisecond flash source/drain anneal and high pressure hydrogen post-metal anneal are explored. Finally, performance dependence on channel and substrate direction has been analyzed to find the optimal use of these SiGe channels. This work describes an exciting opportunity of weighting the possibility of using high mobility channel MOSFETs for future logic technology.

High Mobility Materials for CMOS Applications

High Mobility Materials for CMOS Applications PDF Author: Nadine Collaert
Publisher: Woodhead Publishing
ISBN: 0081020627
Category : Technology & Engineering
Languages : en
Pages : 384

Book Description
High Mobility Materials for CMOS Applications provides a comprehensive overview of recent developments in the field of (Si)Ge and III-V materials and their integration on Si. The book covers material growth and integration on Si, going all the way from device to circuit design. While the book's focus is on digital applications, a number of chapters also address the use of III-V for RF and analog applications, and in optoelectronics. With CMOS technology moving to the 10nm node and beyond, however, severe concerns with power dissipation and performance are arising, hence the need for this timely work on the advantages and challenges of the technology. Addresses each of the challenges of utilizing high mobility materials for CMOS applications, presenting possible solutions and the latest innovations Covers the latest advances in research on heterogeneous integration, gate stack, device design and scalability Provides a broad overview of the topic, from materials integration to circuits

Ge-based Channel MOSFETs

Ge-based Channel MOSFETs PDF Author: Se-hoon Lee
Publisher: LAP Lambert Academic Publishing
ISBN: 9783846506868
Category :
Languages : en
Pages : 160

Book Description
This work presents research on high mobility channel MOSFET structures (planar and non-planar) using group IV material (mainly SiGe) for enhanced performance and reduced operating power. This work especially focuses on improving the performance of short channel device performance of SiGe channel pMOSFETs which has long been researched yet clearly demonstrated in literature only recently. To reach the goal, novel processing technologies such as millisecond flash source/drain anneal and high pressure hydrogen post-metal anneal are explored. Finally, performance dependence on channel and substrate direction has been analyzed to find the optimal use of these SiGe channels. This work describes an exciting opportunity of weighting the possibility of using high mobility channel MOSFETs for future logic technology.

Hole Transport in Strained SiGe-channel MOSFETs

Hole Transport in Strained SiGe-channel MOSFETs PDF Author: Leonardo Gomez (Ph. D.)
Publisher:
ISBN:
Category :
Languages : en
Pages : 167

Book Description
Since the 90 nm CMOS technology node, geometric scaling of CMOS has been supplemented with strain to boost transistor drive current. Future CMOS technology nodes (i.e. beyond the 32 nm node) will require more significant changes to continue improvements in transistor performance. Novel CMOS channel materials and device architectures are one option for enhancing carrier transport and increasing device performance. In this work strained SiGe and Ge are examined as a means of increasing the drive current in deeply scaled CMOS. As part of this work a novel high mobility strained-Ge on-insulator substrate has been developed, and the hole transport characteristics of short channel and asymmetrically strained-SiGe channel p-MOSFETs have been explored. A thin-body biaxial compressive strained-Si/strained-Ge heterostructure on-insulator (HOI) substrate has been developed, which combines the electrostatic benefits of the thin-body architecture with the transport benefits of biaxial compressive strain. A novel Germanium on Silicon growth method and a low temperature bond and etch-back process have been developed to enable Ge HOI fabrication. P-MOSFETs were also fabricated using these substrates and the hole mobility characteristics were studied. The hole mobility and velocity characteristics of short channel biaxial compressive strained-Si 45 Geo. 55 p-MOSFETs on-insulator have also been examined. Devices with gate lengths down to 65 nm were fabricated. The short channel mobility characteristics were extracted and a 2.4x hole mobility enhancement relative to relaxed-Si was observed. The measured hole velocity enhancement is more modest at about 1.2x. Band structure and ballistic velocity simulations suggest that a more substantial velocity improvement can be expected with the incorporation of added longitudinal uniaxial compressive strain in the SiGe channel. The hole mobility characteristics of biaxial strained SiGe and Ge p-MOSFETs with applied uniaxial strain are also studied. The hole mobility in biaxial compressive strained SiGe is already enhanced relative to relaxed Si. It is observed that this mobility enhancement increases further with the application of 110 longitudinal uniaxial compressive strain. Since hole mobility and velocity are correlated through their dependence on the hole effective mass, a mass driven increase in mobility with applied uniaxial strain should result in an increase in velocity. Simulations have also been performed to estimate the hole effective mass change in asymmetric strained SiGe. Finally the piezo resistance coefficients of strained SiGe are extracted and found to be larger than in Si.

Stress and Strain Engineering at Nanoscale in Semiconductor Devices

Stress and Strain Engineering at Nanoscale in Semiconductor Devices PDF Author: Chinmay K. Maiti
Publisher: CRC Press
ISBN: 1000404935
Category : Science
Languages : en
Pages : 275

Book Description
Anticipating a limit to the continuous miniaturization (More-Moore), intense research efforts are being made to co-integrate various functionalities (More-than-Moore) in a single chip. Currently, strain engineering is the main technique used to enhance the performance of advanced semiconductor devices. Written from an engineering applications standpoint, this book encompasses broad areas of semiconductor devices involving the design, simulation, and analysis of Si, heterostructure silicongermanium (SiGe), and III-N compound semiconductor devices. The book provides the background and physical insight needed to understand the new and future developments in the technology CAD (TCAD) design at the nanoscale. Features Covers stressstrain engineering in semiconductor devices, such as FinFETs and III-V Nitride-based devices Includes comprehensive mobility model for strained substrates in global and local strain techniques and their implementation in device simulations Explains the development of strain/stress relationships and their effects on the band structures of strained substrates Uses design of experiments to find the optimum process conditions Illustrates the use of TCAD for modeling strain-engineered FinFETs for DC and AC performance predictions This book is for graduate students and researchers studying solid-state devices and materials, microelectronics, systems and controls, power electronics, nanomaterials, and electronic materials and devices.

III-V Metal-oxide-semiconductor Field-effect-transistors from Planar to 3D

III-V Metal-oxide-semiconductor Field-effect-transistors from Planar to 3D PDF Author: Fei Xue
Publisher:
ISBN:
Category :
Languages : en
Pages : 228

Book Description
Si complementary metal-oxide-semiconductor (CMOS) technology has been prospered through continuously scaling of its feature size. As scaling is approaching its physical limitations, new materials and device structures are expected. High electron mobility III-V materials are attractive as alternative channel materials for future post-Si CMOS applications due to their outstanding transport property. High-k dielectrics/metal gate stack was applied to reduced gate leakage current and thus lower the power dissipation. Combining their benefits, great efforts have been devoted to explore III-V/high-k/metal metal-oxide-semiconductor field-effect-transistors (MOSFETs). The main challenges for III-V MOSFETs include interface issues of high-k/III-V, source and drain contact, silicon integration and reliability. A comprehensive study on III-V MOSFETs has been presented here focusing on three areas: 1) III-V/high-k/metal gate stack: material and electrical properties of various high-k dielectrics on III-V substrates have been systematically examined; 2) device architecture: device structures from planar surface channel MOSFETs and buried channel quantum well FETs (QWFETs) to 3D gate-wrapped-around FETs (GWAFETs) and tunneling FETs (TFETs) have been designed and analyzed; 3) fabrication process: process flow has been set up and optimized to build scaled planar and 3D devices with feature size down to 40nm. Potential of high performances have been demonstrated using novel III-V/high-k devices. Effective channel mobility was significantly improved by applying buried channel QWFET structure. Short channel effect control for sub-100nm devices was enhanced by shrinking gate dielectrics, reducing channel thickness and moving from 2D planar to 3D GWAFET structure. InGaAs TFETs have also been developed for ultra-low power application. This research work demonstrates that III-V/high-k/metal MOSFETs with superior device performances are promising candidates for future ultimately scaled logic devices.

High Mobility Strained Si/SiGe Heterostructure MOSFETs

High Mobility Strained Si/SiGe Heterostructure MOSFETs PDF Author: Christopher W. Leitz
Publisher:
ISBN:
Category : Metal oxide semiconductor field-effect transistors
Languages : en
Pages : 178

Book Description
(Cont.) Record mobility strained Si p-MOSFETs have been fabricated on relaxed 40% Ge virtual substrates. Hole mobility enhancements saturate at virtual substrate compositions of 40% Ge and above, with mobility enhancements over twice that of co-processed bulk Si devices. In contrast, hole mobility in strained Si p-MOSFETs displays no strong dependence on strained layer thickness. These results indicate that strain is the primary variable in determining hole mobility in strained Si p-MOSFETs and that symmetric electron and hole mobility enhancements in strained Si MOSFETs can be obtained for virtual substrate compositions beyond 35% Ge. The effect of alloy scattering on carrier mobility in tensile strained SiGe surface channel MOSFETs is measured directly for the first time. Electron mobility is degraded much more severely than hole mobility in these heterostructures, in agreement with theoretical predictions. Dual channel heterostructures, which consist of the combination of buried compressively strained SiilyGey buried channels and tensile strained Si surface channels, grown on relaxed SilxGex virtual substrates, are explored in detail for the first time. Hole mobilities exceeding 700 cm2/V-s have been achieved by combining tensile strained Si surface channels and compressively strained 80% Ge buried channels grown on relaxed 50% Ge virtual substrates. This layer sequence exhibits nearly symmetric electron and hole mobilities, both enhanced relative to bulk Si ...