Author: Ehsan Noroozinejad Farsangi
Publisher: CRC Press
ISBN: 1000418065
Category : Technology & Engineering
Languages : en
Pages : 522
Book Description
Increasing demand on improving the resiliency of modern structures and infrastructure requires ever more critical and complex designs. Therefore, the need for accurate and efficient approaches to assess uncertainties in loads, geometry, material properties, manufacturing processes, and operational environments has increased significantly. Reliability-based techniques help develop more accurate initial guidance for robust design and help to identify the sources of significant uncertainty in structural systems. Reliability-Based Analysis and Design of Structures and Infrastructure presents an overview of the methods of classical reliability analysis and design most associated with structural reliability. It also introduces more modern methods and advancements, and emphasizes the most useful methods and techniques used in reliability and risk studies, while elaborating their practical applications and limitations rather than detailed derivations. Features: Provides a practical and comprehensive overview of reliability and risk analysis and design techniques. Introduces resilient and smart structures/infrastructure that will lead to more reliable and sustainable societies. Considers loss elimination, risk management and life-cycle asset management as related to infrastructure projects. Introduces probability theory, statistical methods, and reliability analysis methods. Reliability-Based Analysis and Design of Structures and Infrastructure is suitable for researchers and practicing engineers, as well as upper-level students taking related courses in structural reliability analysis and design.
Reliability-Based Analysis and Design of Structures and Infrastructure
Author: Ehsan Noroozinejad Farsangi
Publisher: CRC Press
ISBN: 1000418065
Category : Technology & Engineering
Languages : en
Pages : 522
Book Description
Increasing demand on improving the resiliency of modern structures and infrastructure requires ever more critical and complex designs. Therefore, the need for accurate and efficient approaches to assess uncertainties in loads, geometry, material properties, manufacturing processes, and operational environments has increased significantly. Reliability-based techniques help develop more accurate initial guidance for robust design and help to identify the sources of significant uncertainty in structural systems. Reliability-Based Analysis and Design of Structures and Infrastructure presents an overview of the methods of classical reliability analysis and design most associated with structural reliability. It also introduces more modern methods and advancements, and emphasizes the most useful methods and techniques used in reliability and risk studies, while elaborating their practical applications and limitations rather than detailed derivations. Features: Provides a practical and comprehensive overview of reliability and risk analysis and design techniques. Introduces resilient and smart structures/infrastructure that will lead to more reliable and sustainable societies. Considers loss elimination, risk management and life-cycle asset management as related to infrastructure projects. Introduces probability theory, statistical methods, and reliability analysis methods. Reliability-Based Analysis and Design of Structures and Infrastructure is suitable for researchers and practicing engineers, as well as upper-level students taking related courses in structural reliability analysis and design.
Publisher: CRC Press
ISBN: 1000418065
Category : Technology & Engineering
Languages : en
Pages : 522
Book Description
Increasing demand on improving the resiliency of modern structures and infrastructure requires ever more critical and complex designs. Therefore, the need for accurate and efficient approaches to assess uncertainties in loads, geometry, material properties, manufacturing processes, and operational environments has increased significantly. Reliability-based techniques help develop more accurate initial guidance for robust design and help to identify the sources of significant uncertainty in structural systems. Reliability-Based Analysis and Design of Structures and Infrastructure presents an overview of the methods of classical reliability analysis and design most associated with structural reliability. It also introduces more modern methods and advancements, and emphasizes the most useful methods and techniques used in reliability and risk studies, while elaborating their practical applications and limitations rather than detailed derivations. Features: Provides a practical and comprehensive overview of reliability and risk analysis and design techniques. Introduces resilient and smart structures/infrastructure that will lead to more reliable and sustainable societies. Considers loss elimination, risk management and life-cycle asset management as related to infrastructure projects. Introduces probability theory, statistical methods, and reliability analysis methods. Reliability-Based Analysis and Design of Structures and Infrastructure is suitable for researchers and practicing engineers, as well as upper-level students taking related courses in structural reliability analysis and design.
Optimal Reliability-Based Design of Structures Against Several Natural Hazards
Author: Alfredo Hua-Sing Ang
Publisher:
ISBN: 9781032011363
Category : Reliability (Engineering)
Languages : en
Pages :
Book Description
"The proposed work deals with the application of this powerful method to derive optimal design recommendations for large engineering systems under natural hazards. The three case studies illustrate to engineers and academic specialists how to strike a cost-effective balance in designing such systems"--
Publisher:
ISBN: 9781032011363
Category : Reliability (Engineering)
Languages : en
Pages :
Book Description
"The proposed work deals with the application of this powerful method to derive optimal design recommendations for large engineering systems under natural hazards. The three case studies illustrate to engineers and academic specialists how to strike a cost-effective balance in designing such systems"--
Reliability-based Design of Utility Pole Structures
Author: Habib Dagher
Publisher: Amer Society of Civil Engineers
ISBN: 9780784408452
Category : Technology & Engineering
Languages : en
Pages : 106
Book Description
MOP 111 provides state-of the-art technical information on the design of utility pole structures.
Publisher: Amer Society of Civil Engineers
ISBN: 9780784408452
Category : Technology & Engineering
Languages : en
Pages : 106
Book Description
MOP 111 provides state-of the-art technical information on the design of utility pole structures.
Reliability-based Structural Design
Author: Seung-Kyum Choi
Publisher: Springer Science & Business Media
ISBN: 1846284457
Category : Technology & Engineering
Languages : en
Pages : 309
Book Description
This book provides readers with an understanding of the fundamentals and applications of structural reliability, stochastic finite element method, reliability analysis via stochastic expansion, and optimization under uncertainty. It examines the use of stochastic expansions, including polynomial chaos expansion and Karhunen-Loeve expansion for the reliability analysis of practical engineering problems.
Publisher: Springer Science & Business Media
ISBN: 1846284457
Category : Technology & Engineering
Languages : en
Pages : 309
Book Description
This book provides readers with an understanding of the fundamentals and applications of structural reliability, stochastic finite element method, reliability analysis via stochastic expansion, and optimization under uncertainty. It examines the use of stochastic expansions, including polynomial chaos expansion and Karhunen-Loeve expansion for the reliability analysis of practical engineering problems.
Performance-Based Seismic Design of Concrete Structures and Infrastructures
Author: Plevris, Vagelis
Publisher: IGI Global
ISBN: 1522520902
Category : Technology & Engineering
Languages : en
Pages : 338
Book Description
Solid design and craftsmanship are a necessity for structures and infrastructures that must stand up to natural disasters on a regular basis. Continuous research developments in the engineering field are imperative for sustaining buildings against the threat of earthquakes and other natural disasters. Performance-Based Seismic Design of Concrete Structures and Infrastructures is an informative reference source on all the latest trends and emerging data associated with structural design. Highlighting key topics such as seismic assessments, shear wall structures, and infrastructure resilience, this is an ideal resource for all academicians, students, professionals, and researchers that are seeking new knowledge on the best methods and techniques for designing solid structural designs.
Publisher: IGI Global
ISBN: 1522520902
Category : Technology & Engineering
Languages : en
Pages : 338
Book Description
Solid design and craftsmanship are a necessity for structures and infrastructures that must stand up to natural disasters on a regular basis. Continuous research developments in the engineering field are imperative for sustaining buildings against the threat of earthquakes and other natural disasters. Performance-Based Seismic Design of Concrete Structures and Infrastructures is an informative reference source on all the latest trends and emerging data associated with structural design. Highlighting key topics such as seismic assessments, shear wall structures, and infrastructure resilience, this is an ideal resource for all academicians, students, professionals, and researchers that are seeking new knowledge on the best methods and techniques for designing solid structural designs.
Risk and Reliability Analysis
Author: Vijay P. Singh
Publisher: Amer Society of Civil Engineers
ISBN: 9780784408919
Category : Technology & Engineering
Languages : en
Pages : 785
Book Description
Singh, Jain, and Tyagi present the key concepts of risk and reliability that apply to a wide array of problems in civil and environmental engineering.
Publisher: Amer Society of Civil Engineers
ISBN: 9780784408919
Category : Technology & Engineering
Languages : en
Pages : 785
Book Description
Singh, Jain, and Tyagi present the key concepts of risk and reliability that apply to a wide array of problems in civil and environmental engineering.
Optimal Reliability-Based Design of Structures Against Several Natural Hazards
Author: Alfredo H-S Ang
Publisher: CRC Press
ISBN: 1000461823
Category : Technology & Engineering
Languages : en
Pages : 71
Book Description
Interest in the topic of structural reliability and optimal design has been rapidly growing in recent years. Besides, the field of numerical methods and artificial intelligence is experiencing a surge of new methods and the refinement of existing ones to expand opportunities to apply robust formulations to complex engineering problems. Today, more than ever, the field is receiving fresh ideas on how to face the challenges of finding a balance between cost and benefits that may lead towards the optimal design of systems. Recently, the probability density evolution method (PDEM) was proposed by Prof. Jie Li as an alternative way to obtain the stochastic and dynamic solution of the safety level of engineering systems under any kind of hazard. This work deals with the application of this powerful method to derive optimal design recommendations for large engineering systems under natural hazards. The three case studies illustrate to engineers and academic specialists how to strike a cost-effective balance in designing such systems.
Publisher: CRC Press
ISBN: 1000461823
Category : Technology & Engineering
Languages : en
Pages : 71
Book Description
Interest in the topic of structural reliability and optimal design has been rapidly growing in recent years. Besides, the field of numerical methods and artificial intelligence is experiencing a surge of new methods and the refinement of existing ones to expand opportunities to apply robust formulations to complex engineering problems. Today, more than ever, the field is receiving fresh ideas on how to face the challenges of finding a balance between cost and benefits that may lead towards the optimal design of systems. Recently, the probability density evolution method (PDEM) was proposed by Prof. Jie Li as an alternative way to obtain the stochastic and dynamic solution of the safety level of engineering systems under any kind of hazard. This work deals with the application of this powerful method to derive optimal design recommendations for large engineering systems under natural hazards. The three case studies illustrate to engineers and academic specialists how to strike a cost-effective balance in designing such systems.
Life-cycle Cost Analysis and Design of Civil Infrastructure Systems
Author: Dan M. Frangopol
Publisher: American Society of Civil Engineers
ISBN: 9780784405710
Category : Technology & Engineering
Languages : en
Pages : 323
Book Description
Featuring sixteen technical papers and two keynote addresses presented at the August 2000 conference in Honolulu, this book covers a range of studies on life-cycle cost analysis, design, maintenance, and management of civil infrastructure systems. Topics include conceptual design of structural syste
Publisher: American Society of Civil Engineers
ISBN: 9780784405710
Category : Technology & Engineering
Languages : en
Pages : 323
Book Description
Featuring sixteen technical papers and two keynote addresses presented at the August 2000 conference in Honolulu, this book covers a range of studies on life-cycle cost analysis, design, maintenance, and management of civil infrastructure systems. Topics include conceptual design of structural syste
Thermal and Structural Electronic Packaging Analysis for Space and Extreme Environments
Author: Juan Cepeda-Rizo
Publisher: CRC Press
ISBN: 1000511073
Category : Technology & Engineering
Languages : en
Pages : 305
Book Description
Have you ever wondered how NASA designs, builds, and tests spacecrafts and hardware for space? How is it that wildly successful programs such as the Mars Exploration Rovers could produce a rover that lasted over ten times the expected prime mission duration? Or build a spacecraft designed to visit two orbiting destinations and last over 10 years when the fuel ran out? This book was written by NASA/JPL engineers with experience across multiple projects, including the Mars rovers, Mars helicopter, and Dawn ion propulsion spacecraft in addition to many more missions and technology demonstration programs. It provides useful and practical approaches to solving the most complex thermal-structural problems ever attempted for design spacecraft to survive the severe cold of deep space, as well as the unforgiving temperature swings on the surface of Mars. This is done without losing sight of the fundamental and classical theories of thermodynamics and structural mechanics that paved the way to more pragmatic and applied methods such finite element analysis and Monte Carlo ray tracing, for example. Features: Includes case studies from NASA’s Jet Propulsion Laboratory, which prides itself in robotic exploration of the solar system, as well as flyting the first cubeSAT to Mars. Enables spacecraft designer engineers to create a design that is structurally and thermally sound, and reliable, in the quickest time afforded. Examines innovative low-cost thermal and power systems. Explains how to design to survive rocket launch, the surfaces of Mars and Venus. Suitable for practicing professionals as well as upper-level students in the areas of aerospace, mechanical, thermal, electrical, and systems engineering, Thermal and Structural Electronic Packaging Analysis for Space and Extreme Environments provides cutting-edge information on how to design, and analyze, and test in the fast-paced and low-cost small satellite environment and learn techniques to reduce the design and test cycles without compromising reliability. It serves both as a reference and a training manual for designing satellites to withstand the structural and thermal challenges of extreme environments in outer space.
Publisher: CRC Press
ISBN: 1000511073
Category : Technology & Engineering
Languages : en
Pages : 305
Book Description
Have you ever wondered how NASA designs, builds, and tests spacecrafts and hardware for space? How is it that wildly successful programs such as the Mars Exploration Rovers could produce a rover that lasted over ten times the expected prime mission duration? Or build a spacecraft designed to visit two orbiting destinations and last over 10 years when the fuel ran out? This book was written by NASA/JPL engineers with experience across multiple projects, including the Mars rovers, Mars helicopter, and Dawn ion propulsion spacecraft in addition to many more missions and technology demonstration programs. It provides useful and practical approaches to solving the most complex thermal-structural problems ever attempted for design spacecraft to survive the severe cold of deep space, as well as the unforgiving temperature swings on the surface of Mars. This is done without losing sight of the fundamental and classical theories of thermodynamics and structural mechanics that paved the way to more pragmatic and applied methods such finite element analysis and Monte Carlo ray tracing, for example. Features: Includes case studies from NASA’s Jet Propulsion Laboratory, which prides itself in robotic exploration of the solar system, as well as flyting the first cubeSAT to Mars. Enables spacecraft designer engineers to create a design that is structurally and thermally sound, and reliable, in the quickest time afforded. Examines innovative low-cost thermal and power systems. Explains how to design to survive rocket launch, the surfaces of Mars and Venus. Suitable for practicing professionals as well as upper-level students in the areas of aerospace, mechanical, thermal, electrical, and systems engineering, Thermal and Structural Electronic Packaging Analysis for Space and Extreme Environments provides cutting-edge information on how to design, and analyze, and test in the fast-paced and low-cost small satellite environment and learn techniques to reduce the design and test cycles without compromising reliability. It serves both as a reference and a training manual for designing satellites to withstand the structural and thermal challenges of extreme environments in outer space.
Structural Reliability Methods
Author: O. Ditlevsen
Publisher: Wiley
ISBN: 9780471960867
Category : Technology & Engineering
Languages : en
Pages : 0
Book Description
This book addresses probabilistic methods for the evaluation of structural reliability, including the theoretical basis of these methods. Partial safety factor codes under current practice are briefly introduced and discussed. A probabilistic code format for obtaining a formal reliability evaluation system that catches the most essential features of the nature of the uncertainties and their interplay is then gradually developed. The concepts presented are illustrated by numerous examples throughout the text. The modular approach of the book allows the reader to navigate through the different stages of the methods.
Publisher: Wiley
ISBN: 9780471960867
Category : Technology & Engineering
Languages : en
Pages : 0
Book Description
This book addresses probabilistic methods for the evaluation of structural reliability, including the theoretical basis of these methods. Partial safety factor codes under current practice are briefly introduced and discussed. A probabilistic code format for obtaining a formal reliability evaluation system that catches the most essential features of the nature of the uncertainties and their interplay is then gradually developed. The concepts presented are illustrated by numerous examples throughout the text. The modular approach of the book allows the reader to navigate through the different stages of the methods.