Author: Yan-Gang Zhao
Publisher: John Wiley & Sons
ISBN: 1119620813
Category : Technology & Engineering
Languages : en
Pages : 660
Book Description
STRUCTURAL RELIABILITY Discover a new and innovative approach to structural reliability from two authoritative and accomplished authors The subject of structural reliability, which deals with the problems of evaluating the safety and risk posed by a wide variety of structures, has grown rapidly over the last four decades. And while the First-Order Reliability Method is principally used by most textbooks on this subject, other approaches have identified some of the limitations of that method. In Structural Reliability: Approaches from Perspectives of Statistical Moments, accomplished engineers and authors Yan-Gang Zhao and Dr. Zhao-Hui Lu, deliver a concise and insightful exploration of an alternative and innovative approach to structural reliability. Called the Methods of Moment, the authors’ approach is based on the information of statistical moments of basic random variables and the performance function. The Methods of Moment approach facilitates structural reliability analysis and reliability-based design and can be extended to other engineering disciplines, yielding further insights into challenging problems involving randomness. Readers will also benefit from the inclusion of: A thorough introduction to the measures of structural safety, including uncertainties in structural design, deterministic measures of safety, and probabilistic measures of safety An exploration of the fundamentals of structural reliability theory, including the performance function and failure probability A practical discussion of moment evaluation for performance functions, including moment computation for both explicit and implicit performance functions A concise treatment of direct methods of moment, including the third- and fourth-moment reliability methods Perfect for professors, researchers, and graduate students in civil engineering, Structural Reliability: Approaches from Perspectives of Statistical Moments will also earn a place in the libraries of professionals and students working or studying in mechanical engineering, aerospace and aeronautics engineering, marine and offshore engineering, ship engineering, and applied mechanics.
Structural Reliability
Author: Yan-Gang Zhao
Publisher: John Wiley & Sons
ISBN: 1119620813
Category : Technology & Engineering
Languages : en
Pages : 660
Book Description
STRUCTURAL RELIABILITY Discover a new and innovative approach to structural reliability from two authoritative and accomplished authors The subject of structural reliability, which deals with the problems of evaluating the safety and risk posed by a wide variety of structures, has grown rapidly over the last four decades. And while the First-Order Reliability Method is principally used by most textbooks on this subject, other approaches have identified some of the limitations of that method. In Structural Reliability: Approaches from Perspectives of Statistical Moments, accomplished engineers and authors Yan-Gang Zhao and Dr. Zhao-Hui Lu, deliver a concise and insightful exploration of an alternative and innovative approach to structural reliability. Called the Methods of Moment, the authors’ approach is based on the information of statistical moments of basic random variables and the performance function. The Methods of Moment approach facilitates structural reliability analysis and reliability-based design and can be extended to other engineering disciplines, yielding further insights into challenging problems involving randomness. Readers will also benefit from the inclusion of: A thorough introduction to the measures of structural safety, including uncertainties in structural design, deterministic measures of safety, and probabilistic measures of safety An exploration of the fundamentals of structural reliability theory, including the performance function and failure probability A practical discussion of moment evaluation for performance functions, including moment computation for both explicit and implicit performance functions A concise treatment of direct methods of moment, including the third- and fourth-moment reliability methods Perfect for professors, researchers, and graduate students in civil engineering, Structural Reliability: Approaches from Perspectives of Statistical Moments will also earn a place in the libraries of professionals and students working or studying in mechanical engineering, aerospace and aeronautics engineering, marine and offshore engineering, ship engineering, and applied mechanics.
Publisher: John Wiley & Sons
ISBN: 1119620813
Category : Technology & Engineering
Languages : en
Pages : 660
Book Description
STRUCTURAL RELIABILITY Discover a new and innovative approach to structural reliability from two authoritative and accomplished authors The subject of structural reliability, which deals with the problems of evaluating the safety and risk posed by a wide variety of structures, has grown rapidly over the last four decades. And while the First-Order Reliability Method is principally used by most textbooks on this subject, other approaches have identified some of the limitations of that method. In Structural Reliability: Approaches from Perspectives of Statistical Moments, accomplished engineers and authors Yan-Gang Zhao and Dr. Zhao-Hui Lu, deliver a concise and insightful exploration of an alternative and innovative approach to structural reliability. Called the Methods of Moment, the authors’ approach is based on the information of statistical moments of basic random variables and the performance function. The Methods of Moment approach facilitates structural reliability analysis and reliability-based design and can be extended to other engineering disciplines, yielding further insights into challenging problems involving randomness. Readers will also benefit from the inclusion of: A thorough introduction to the measures of structural safety, including uncertainties in structural design, deterministic measures of safety, and probabilistic measures of safety An exploration of the fundamentals of structural reliability theory, including the performance function and failure probability A practical discussion of moment evaluation for performance functions, including moment computation for both explicit and implicit performance functions A concise treatment of direct methods of moment, including the third- and fourth-moment reliability methods Perfect for professors, researchers, and graduate students in civil engineering, Structural Reliability: Approaches from Perspectives of Statistical Moments will also earn a place in the libraries of professionals and students working or studying in mechanical engineering, aerospace and aeronautics engineering, marine and offshore engineering, ship engineering, and applied mechanics.
Reliability-based Structural Design
Author: Seung-Kyum Choi
Publisher: Springer Science & Business Media
ISBN: 1846284457
Category : Technology & Engineering
Languages : en
Pages : 309
Book Description
This book provides readers with an understanding of the fundamentals and applications of structural reliability, stochastic finite element method, reliability analysis via stochastic expansion, and optimization under uncertainty. It examines the use of stochastic expansions, including polynomial chaos expansion and Karhunen-Loeve expansion for the reliability analysis of practical engineering problems.
Publisher: Springer Science & Business Media
ISBN: 1846284457
Category : Technology & Engineering
Languages : en
Pages : 309
Book Description
This book provides readers with an understanding of the fundamentals and applications of structural reliability, stochastic finite element method, reliability analysis via stochastic expansion, and optimization under uncertainty. It examines the use of stochastic expansions, including polynomial chaos expansion and Karhunen-Loeve expansion for the reliability analysis of practical engineering problems.
Structural Reliability Analysis and Prediction
Author: Robert E. Melchers
Publisher: Wiley-Blackwell
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 464
Book Description
Publisher Description
Publisher: Wiley-Blackwell
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 464
Book Description
Publisher Description
Structural Reliability Methods
Author: O. Ditlevsen
Publisher: Wiley
ISBN: 9780471960867
Category : Technology & Engineering
Languages : en
Pages : 0
Book Description
This book addresses probabilistic methods for the evaluation of structural reliability, including the theoretical basis of these methods. Partial safety factor codes under current practice are briefly introduced and discussed. A probabilistic code format for obtaining a formal reliability evaluation system that catches the most essential features of the nature of the uncertainties and their interplay is then gradually developed. The concepts presented are illustrated by numerous examples throughout the text. The modular approach of the book allows the reader to navigate through the different stages of the methods.
Publisher: Wiley
ISBN: 9780471960867
Category : Technology & Engineering
Languages : en
Pages : 0
Book Description
This book addresses probabilistic methods for the evaluation of structural reliability, including the theoretical basis of these methods. Partial safety factor codes under current practice are briefly introduced and discussed. A probabilistic code format for obtaining a formal reliability evaluation system that catches the most essential features of the nature of the uncertainties and their interplay is then gradually developed. The concepts presented are illustrated by numerous examples throughout the text. The modular approach of the book allows the reader to navigate through the different stages of the methods.
Applied Methods of Structural Reliability
Author: Milík Tichy
Publisher: Springer Science & Business Media
ISBN: 9780792323495
Category : Technology & Engineering
Languages : en
Pages : 420
Book Description
A quarter of the century has elapsed since I gave my first course in structural reliability to graduate students at the University of Waterloo in Canada. Since that time on I have given many courses and seminars to students, researchers, designers, and site engineers interested in reliability. I also participated in and was responsible for numerous projects where reliability solutions were required. During that period, the scope of structural reliability gradually enlarged to become a substantial part of the general reliability theory. First, it is apparent that bearing structures should not be isolated objectives of interest, and, consequently, that constntCted facilities should be studied. Second, a new engineering branch has emerged -reliability engineering. These two facts have highlighted new aspects and asked for new approaches to the theory and applications. I always state in my lectures that the reliability theory is nothing more than mathematized engineering judgment. In fact, thanks mainly to probability and statistics, and also to computers, the empirical knowledge gained by Humankind's construction experience could have been transposed into a pattern of logic thinking, able to produce conclusions and to forecast the behavior of engineering entities. This manner of thinking has developed into an intricate network linked by certain rules, which, in a way, can be considered a type of reliability grammar. We can discern many grammatical concepts in the general structure of the reliability theory.
Publisher: Springer Science & Business Media
ISBN: 9780792323495
Category : Technology & Engineering
Languages : en
Pages : 420
Book Description
A quarter of the century has elapsed since I gave my first course in structural reliability to graduate students at the University of Waterloo in Canada. Since that time on I have given many courses and seminars to students, researchers, designers, and site engineers interested in reliability. I also participated in and was responsible for numerous projects where reliability solutions were required. During that period, the scope of structural reliability gradually enlarged to become a substantial part of the general reliability theory. First, it is apparent that bearing structures should not be isolated objectives of interest, and, consequently, that constntCted facilities should be studied. Second, a new engineering branch has emerged -reliability engineering. These two facts have highlighted new aspects and asked for new approaches to the theory and applications. I always state in my lectures that the reliability theory is nothing more than mathematized engineering judgment. In fact, thanks mainly to probability and statistics, and also to computers, the empirical knowledge gained by Humankind's construction experience could have been transposed into a pattern of logic thinking, able to produce conclusions and to forecast the behavior of engineering entities. This manner of thinking has developed into an intricate network linked by certain rules, which, in a way, can be considered a type of reliability grammar. We can discern many grammatical concepts in the general structure of the reliability theory.
Structural Reliability
Author: Jorge Eduardo Hurtado
Publisher: Springer Science & Business Media
ISBN: 3540409874
Category : Technology & Engineering
Languages : en
Pages : 267
Book Description
The last decades have witnessed the development of methods for solving struc tural reliability problems, which emerged from the efforts of numerous re searchers all over the world. For the specific and most common problem of determining the probability of failure of a structural system in which the limit state function g( x) = 0 is only implicitly known, the proposed methods can be grouped into two main categories: • Methods based on the Taylor expansion of the performance function g(x) about the most likely failure point (the design point), which is determined in the solution process. These methods are known as FORM and SORM (First- and Second Order Reliability Methods, respectively). • Monte Carlo methods, which require repeated calls of the numerical (nor mally finite element) solver of the structural model using a random real ization of the basic variable set x each time. In the first category of methods only SORM can be considered of a wide applicability. However, it requires the knowledge of the first and second deriva tives of the performance function, whose calculation in several dimensions either implies a high computational effort when faced with finite difference techniques or special programs when using perturbation techniques, which nevertheless require the use of large matrices in their computations. In or der to simplify this task, use has been proposed of techniques that can be regarded as variants of the Response Surface Method.
Publisher: Springer Science & Business Media
ISBN: 3540409874
Category : Technology & Engineering
Languages : en
Pages : 267
Book Description
The last decades have witnessed the development of methods for solving struc tural reliability problems, which emerged from the efforts of numerous re searchers all over the world. For the specific and most common problem of determining the probability of failure of a structural system in which the limit state function g( x) = 0 is only implicitly known, the proposed methods can be grouped into two main categories: • Methods based on the Taylor expansion of the performance function g(x) about the most likely failure point (the design point), which is determined in the solution process. These methods are known as FORM and SORM (First- and Second Order Reliability Methods, respectively). • Monte Carlo methods, which require repeated calls of the numerical (nor mally finite element) solver of the structural model using a random real ization of the basic variable set x each time. In the first category of methods only SORM can be considered of a wide applicability. However, it requires the knowledge of the first and second deriva tives of the performance function, whose calculation in several dimensions either implies a high computational effort when faced with finite difference techniques or special programs when using perturbation techniques, which nevertheless require the use of large matrices in their computations. In or der to simplify this task, use has been proposed of techniques that can be regarded as variants of the Response Surface Method.
Structural Reliability
Author: Maurice Lemaire
Publisher: John Wiley & Sons
ISBN: 111862310X
Category : Technology & Engineering
Languages : en
Pages : 356
Book Description
This book describes the main methods used in the reliability of structures and their use in the design process leading to reliable products. This title provides the understanding needed to implement the variety of new reliability software programs.
Publisher: John Wiley & Sons
ISBN: 111862310X
Category : Technology & Engineering
Languages : en
Pages : 356
Book Description
This book describes the main methods used in the reliability of structures and their use in the design process leading to reliable products. This title provides the understanding needed to implement the variety of new reliability software programs.
Structural and System Reliability
Author: Armen Der Kiureghian
Publisher: Cambridge University Press
ISBN: 1108998437
Category : Science
Languages : en
Pages : 610
Book Description
Based on material taught at the University of California, Berkeley, this textbook offers a modern, rigorous and comprehensive treatment of the methods of structural and system reliability analysis. It covers the first- and second-order reliability methods for components and systems, simulation methods, time- and space-variant reliability, and Bayesian parameter estimation and reliability updating. It also presents more advanced, state-of-the-art topics such as finite-element reliability methods, stochastic structural dynamics, reliability-based optimal design, and Bayesian networks. A wealth of well-designed examples connect theory with practice, with simple examples demonstrating mathematical concepts and larger examples demonstrating their applications. End-of-chapter homework problems are included throughout. Including all necessary background material from probability theory, and accompanied online by a solutions manual and PowerPoint slides for instructors, this is the ideal text for senior undergraduate and graduate students taking courses on structural and system reliability in departments of civil, environmental and mechanical engineering.
Publisher: Cambridge University Press
ISBN: 1108998437
Category : Science
Languages : en
Pages : 610
Book Description
Based on material taught at the University of California, Berkeley, this textbook offers a modern, rigorous and comprehensive treatment of the methods of structural and system reliability analysis. It covers the first- and second-order reliability methods for components and systems, simulation methods, time- and space-variant reliability, and Bayesian parameter estimation and reliability updating. It also presents more advanced, state-of-the-art topics such as finite-element reliability methods, stochastic structural dynamics, reliability-based optimal design, and Bayesian networks. A wealth of well-designed examples connect theory with practice, with simple examples demonstrating mathematical concepts and larger examples demonstrating their applications. End-of-chapter homework problems are included throughout. Including all necessary background material from probability theory, and accompanied online by a solutions manual and PowerPoint slides for instructors, this is the ideal text for senior undergraduate and graduate students taking courses on structural and system reliability in departments of civil, environmental and mechanical engineering.
Offshore Structural Engineering
Author: Srinivasan Chandrasekaran
Publisher: CRC Press
ISBN: 1498765203
Category : Technology & Engineering
Languages : en
Pages : 254
Book Description
Successfully estimate risk and reliability, and produce innovative, yet reliable designs using the approaches outlined in Offshore Structural Engineering: Reliability and Risk Assessment. A hands-on guide for practicing professionals, this book covers the reliability of offshore structures with an emphasis on the safety and reliability of offshore facilities during analysis, design, inspection, and planning. Since risk assessment and reliability estimates are often based on probability, the author utilizes concepts of probability and statistical analysis to address the risks and uncertainties involved in design. He explains the concepts with clear illustrations and tutorials, provides a chapter on probability theory, and covers various stages of the process that include data collection, analysis, design and construction, and commissioning. In addition, the author discusses advances in geometric structural forms for deep-water oil exploration, the rational treatment of uncertainties in structural engineering, and the safety and serviceability of civil engineering and other offshore structures. An invaluable guide to innovative and reliable structural design, this book: Defines the structural reliability theory Explains the reliability analysis of structures Examines the reliability of offshore structures Describes the probabilistic distribution for important loading variables Includes methods of reliability analysis Addresses risk assessment and more Offshore Structural Engineering: Reliability and Risk Assessment provides an in-depth analysis of risk analysis and assessment and highlights important aspects of offshore structural reliability. The book serves as a practical reference to engineers and students involved in naval architecture, ocean engineering, civil/structural, and petroleum engineering.
Publisher: CRC Press
ISBN: 1498765203
Category : Technology & Engineering
Languages : en
Pages : 254
Book Description
Successfully estimate risk and reliability, and produce innovative, yet reliable designs using the approaches outlined in Offshore Structural Engineering: Reliability and Risk Assessment. A hands-on guide for practicing professionals, this book covers the reliability of offshore structures with an emphasis on the safety and reliability of offshore facilities during analysis, design, inspection, and planning. Since risk assessment and reliability estimates are often based on probability, the author utilizes concepts of probability and statistical analysis to address the risks and uncertainties involved in design. He explains the concepts with clear illustrations and tutorials, provides a chapter on probability theory, and covers various stages of the process that include data collection, analysis, design and construction, and commissioning. In addition, the author discusses advances in geometric structural forms for deep-water oil exploration, the rational treatment of uncertainties in structural engineering, and the safety and serviceability of civil engineering and other offshore structures. An invaluable guide to innovative and reliable structural design, this book: Defines the structural reliability theory Explains the reliability analysis of structures Examines the reliability of offshore structures Describes the probabilistic distribution for important loading variables Includes methods of reliability analysis Addresses risk assessment and more Offshore Structural Engineering: Reliability and Risk Assessment provides an in-depth analysis of risk analysis and assessment and highlights important aspects of offshore structural reliability. The book serves as a practical reference to engineers and students involved in naval architecture, ocean engineering, civil/structural, and petroleum engineering.
Application of Structural Systems Reliability Theory
Author: Palle Thoft-Christensen
Publisher: Springer Science & Business Media
ISBN: 3642827640
Category : Technology & Engineering
Languages : en
Pages : 346
Book Description
During the last two decades more and more universities offer courses on modern structural reliability theory. A course on structural reliability theory is now a natural part of the curri culum for mechanical and structural engineering students. As a result of this, a number of textbooks have been published in this decade. In PlOst of these books it is shown how the reliability of single structural members can be evaluated in a rational way. The methods used are usually so-called level 2 methods, i. e. methods involving certain approximate iter ative calculations to obtain an approximate value of the probability of failure of the struc tural members. In these methods the joint probability distribution of relevant variables (re sistance variables, loads, etc. ) is simplified and the failure criteria are idealized in such a way that the reliability calculations can be performed without an unreasonable amount of work. In spite of the approximations and idealizations made it is believed that a rational treatment of uncertainties in structural engineering can be obtained by level 2 methods. Usually, in sufficient data are at hand to make a more advanced estimate of the reliability of a struc tural member. It has been recognized for many years that a fully satisfactory estimate of the reliability of a structure must be based on a systems approach. In some situations it is sufficient to estimate the reliability of the individual structural members of a structural system.
Publisher: Springer Science & Business Media
ISBN: 3642827640
Category : Technology & Engineering
Languages : en
Pages : 346
Book Description
During the last two decades more and more universities offer courses on modern structural reliability theory. A course on structural reliability theory is now a natural part of the curri culum for mechanical and structural engineering students. As a result of this, a number of textbooks have been published in this decade. In PlOst of these books it is shown how the reliability of single structural members can be evaluated in a rational way. The methods used are usually so-called level 2 methods, i. e. methods involving certain approximate iter ative calculations to obtain an approximate value of the probability of failure of the struc tural members. In these methods the joint probability distribution of relevant variables (re sistance variables, loads, etc. ) is simplified and the failure criteria are idealized in such a way that the reliability calculations can be performed without an unreasonable amount of work. In spite of the approximations and idealizations made it is believed that a rational treatment of uncertainties in structural engineering can be obtained by level 2 methods. Usually, in sufficient data are at hand to make a more advanced estimate of the reliability of a struc tural member. It has been recognized for many years that a fully satisfactory estimate of the reliability of a structure must be based on a systems approach. In some situations it is sufficient to estimate the reliability of the individual structural members of a structural system.