Atoms, Solids, and Plasmas in Super-Intense Laser Fields PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Atoms, Solids, and Plasmas in Super-Intense Laser Fields PDF full book. Access full book title Atoms, Solids, and Plasmas in Super-Intense Laser Fields by Dimitri Batani. Download full books in PDF and EPUB format.

Atoms, Solids, and Plasmas in Super-Intense Laser Fields

Atoms, Solids, and Plasmas in Super-Intense Laser Fields PDF Author: Dimitri Batani
Publisher: Springer Science & Business Media
ISBN: 9780306466151
Category : Science
Languages : en
Pages : 434

Book Description
Proceedings of the 30th Course of the International School of Quantum Electronics on Atoms, Solids and Plasmas in Super-Intense Laser Fields, held 8-14 July, in Erice, Sicily

Atoms, Solids, and Plasmas in Super-Intense Laser Fields

Atoms, Solids, and Plasmas in Super-Intense Laser Fields PDF Author: Dimitri Batani
Publisher: Springer Science & Business Media
ISBN: 9780306466151
Category : Science
Languages : en
Pages : 434

Book Description
Proceedings of the 30th Course of the International School of Quantum Electronics on Atoms, Solids and Plasmas in Super-Intense Laser Fields, held 8-14 July, in Erice, Sicily

A Superintense Laser-Plasma Interaction Theory Primer

A Superintense Laser-Plasma Interaction Theory Primer PDF Author: Andrea Macchi
Publisher: Springer Science & Business Media
ISBN: 9400761252
Category : Science
Languages : en
Pages : 121

Book Description
The continuous trend towards higher and higher laser intensities has opened the way to new physical regimes and advanced applications of laser-plasma interactions, thus stimulating novel connections with ultrafast optics, astrophysics, particle physics, and biomedical applications. This book is primarily oriented towards students and young researchers who need to acquire rapidly a basic knowledge of this active and rapidly changing research field. To this aim, the presentation is focused on a selection of basic models and inspiring examples, and includes topics which emerged recently such as ion acceleration, "relativistic engineering" and radiation friction. The contents are presented in a self-contained way assuming only a basic knowledge of classical electrodynamics, mechanics and relativistic dynamics at the undergraduate (Bachelor) level, without requiring any previous knowledge of plasma physics. Hence, the book may serve in several ways: as a compact textbook for lecture courses, as a short and accessible introduction for the newcomer, as a quick reference for the experienced researcher, and also as an introduction to some nonlinear mathematical methods through examples of their application to laser-plasma modeling.

Frontiers in High Energy Density Physics

Frontiers in High Energy Density Physics PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 030908637X
Category : Science
Languages : en
Pages : 177

Book Description
Recent scientific and technical advances have made it possible to create matter in the laboratory under conditions relevant to astrophysical systems such as supernovae and black holes. These advances will also benefit inertial confinement fusion research and the nation's nuclear weapon's program. The report describes the major research facilities on which such high energy density conditions can be achieved and lists a number of key scientific questions about high energy density physics that can be addressed by this research. Several recommendations are presented that would facilitate the development of a comprehensive strategy for realizing these research opportunities.

The Physics of Laser Plasmas and Applications - Volume 1

The Physics of Laser Plasmas and Applications - Volume 1 PDF Author: Hideaki Takabe
Publisher: Springer Nature
ISBN: 3030496139
Category : Science
Languages : en
Pages : 399

Book Description
The series of books discusses the physics of laser and matter interaction, fluid dynamics of high-temperature and high-density compressible plasma, and kinetic phenomena and particle dynamics in laser-produced plasma. The book (Vol.1) gives the physics of intense-laser absorption in matter and/or plasma in non-relativistic and relativistic laser-intensity regime. In many cases, it is explained with clear images of physics so that an intuitive understanding of individual physics is possible for non-specialists. For intense-laser of 1013-16 W/cm2, the laser energy is mainly absorbed via collisional process, where the oscillation energy is converted to thermal energy by non-adiabatic Coulomb collision with the ions. Collisionless interactions with the collective modes in plasma are also described. The main topics are the interaction of ultra-intense laser and plasma for the intensity near and over 1018W/cm2. In such regime, relativistic dynamics become essential. A new physics appears due to the relativistic effects, such as mass correction, relativistic nonlinear force, chaos physics of particle motions, and so on. The book provides clearly the theoretical base for challenging the laser-plasma interaction physics in the wide range of power lasers. It is suitable as a textbook for upper-undergraduate and graduate students as well as for readers who want to understand the whole physics structure about what happen when an intense-laser irradiates any materials including solids, gas etc. Explaining the physics intuitively without complicated mathematics, it is also a valuable resource for engineering students and researchers as well as for self-study.

Laser-Plasma Interactions

Laser-Plasma Interactions PDF Author: Dino A. Jaroszynski
Publisher: CRC Press
ISBN: 1584887796
Category : Science
Languages : en
Pages : 454

Book Description
A Solid Compendium of Advanced Diagnostic and Simulation ToolsExploring the most exciting and topical areas in this field, Laser-Plasma Interactions focuses on the interaction of intense laser radiation with plasma. After discussing the basic theory of the interaction of intense electromagnetic radiation fields with matter, the book covers three ap

Plasmas at High Temperature and Density

Plasmas at High Temperature and Density PDF Author: Heinrich Hora
Publisher: Springer Science & Business Media
ISBN: 3540889663
Category : Science
Languages : en
Pages : 455

Book Description
"New physics" is an appealing new keyword, not yet devalued by the ravages of inflation. But what has this to do with such an ugly field as plasma physics, steeped in classical physics, mostly outworn, with all its unsolved and ambiguous technological problems and its messy and open ended numerical studies? "New physics" is concerned with quarks, Higgs particles, grand unified theory, super strings, gravitational waves, and the profound basics of cosmology and black holes. It is the field of astonishing quantum effects, demonstrated by the von Klitzing effect and high temperature superconductors. But what can plasma physicists offer, after so many years of expensive and frustrating research to solve the problem of fusion energy? One may suggest that the fascinating research ofchaos with applications to plasma, or the achievements of statistical mechanics applied to plasmas, has something to offer and should be the subject of attention. However, this is not the aim of this book. Complementing the traditional aim of physics, which is to interpret the phenomena of nature by generalizing laws such that exact predictions about new properties and effects can be drawn, this book demonstrates how new physics has been derived over the last 30 years from the state of matter which exists at high temperatures (plasma).

High-Power Laser-Plasma Interaction

High-Power Laser-Plasma Interaction PDF Author: C. S. Liu
Publisher: Cambridge University Press
ISBN: 1108618227
Category : Science
Languages : en
Pages :

Book Description
The field of high-power laser-plasma interaction has grown in the last few decades, with applications ranging from laser-driven fusion and laser acceleration of charged particles to laser ablation of materials. This comprehensive text covers fundamental concepts including electromagnetics and electrostatic waves, parameter instabilities, laser driven fusion,charged particle acceleration and gamma rays. Two important techniques of laser proton interactions including target normal sheath acceleration (TNSA) and radiation pressure acceleration (RPA) are discussed in detail, along with their applications in the field of medicine. An analytical framework is developed for laser beat-wave and wakefield excitation of plasma waves and subsequent acceleration of electrons. The book covers parametric oscillator model and studies the coupling of laser light with collective modes.

Numerical Simulation of Relativistic Laser Plasma Interaction

Numerical Simulation of Relativistic Laser Plasma Interaction PDF Author: Julia Maria Schweitzer
Publisher:
ISBN:
Category :
Languages : en
Pages : 102

Book Description


Positivity Preservation in the Simulation of Relativistic Laser-Plasma Interaction

Positivity Preservation in the Simulation of Relativistic Laser-Plasma Interaction PDF Author: Anke Wortmann
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description


Relativistic solitary structures inlaser-plasma-interaction

Relativistic solitary structures inlaser-plasma-interaction PDF Author: Gtz Lehmann
Publisher: Sudwestdeutscher Verlag Fur Hochschulschriften AG
ISBN: 9783838104546
Category :
Languages : de
Pages : 160

Book Description
The interaction of relativistically intense laser radiation with plasma is rich in nonlinear processes like laser pulse self-modulation and self-focusing, wake-field excitation, wave-breaking and the creation of relativistic solitary structures. The creation and evolution of solitary structures during relativistic laser-plasma-interaction is discussed in this book. A relativistic Maxwell-fluid model is formulated to investigate these solitary structures. We discuss the creation of pre-solitons and their transition to post-solitons. The longitudinal and transversal stability of stationary soliton solutions to the Maxwell-fluid model are examined by numerical linear stability analysis. The transversal instability is identified to be the dominant process. Relativistic electrostatic wave-breaking often is part of the nonlinear evolution of unstable relativistic solitons. A process that will eventually lead to wave-breaking for every electrostatic wave in a cold relativistic plasma is presented. The formalism allows a generalization of known criteria to the relativistic regime and to estimate the breaking time.