Relativistic Effects in Chemistry PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Relativistic Effects in Chemistry PDF full book. Access full book title Relativistic Effects in Chemistry by Krishnan Balasubramanian. Download full books in PDF and EPUB format.

Relativistic Effects in Chemistry

Relativistic Effects in Chemistry PDF Author: Krishnan Balasubramanian
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description


Relativistic Effects in Chemistry

Relativistic Effects in Chemistry PDF Author: Krishnan Balasubramanian
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description


Relativistic Effects in Chemistry, Theory and Techniques and Relativistic Effects in Chemistry

Relativistic Effects in Chemistry, Theory and Techniques and Relativistic Effects in Chemistry PDF Author: Krishnan Balasubramanian
Publisher: Wiley-Interscience
ISBN:
Category : Science
Languages : en
Pages : 326

Book Description
"Pecial Relativity. Relativistic Quantum Mechanics. Relativistic Quantum Chemistry. Double-Group Symmetry and the Classification of Relativistic Electronic States. Index.

Relativistic Effects in Chemistry, Theory and Techniques and Relativistic Effects in Chemistry

Relativistic Effects in Chemistry, Theory and Techniques and Relativistic Effects in Chemistry PDF Author: Krishnan Balasubramanian
Publisher: Wiley-Interscience
ISBN: 9780471304005
Category : Science
Languages : en
Pages : 301

Book Description
E = mc2 and the Periodic Table . . . RELATIVISTIC EFFECTS IN CHEMISTRY This century's most famous equation, Einstein's special theory of relativity, transformed our comprehension of the nature of time and matter. Today, making use of the theory in a relativistic analysis of heavy molecules, that is, computing the properties and nature of electrons, is the work of chemists intent on exploring the mysteries of minute particles. The first work of its kind, Relativistic Effects in Chemistry details the computational and analytical methods used in studying the relativistic effects in chemical bonding as well as the spectroscopic properties of molecules containing very heavy atoms. The first of two independent volumes, Part A: Theory and Techniques describes the basic techniques of relativistic quantum chemistry. Its systematic five-part format begins with a detailed exposition of Einstein's special theory of relativity, the significance of relativity in chemistry, and the nature of relativistic effects, especially with molecules containing both main group atoms and transition metal atoms. Chapter 3 discusses the fundamentals of relativistic quantum mechanics starting from the Klein-Gordon equation through such advanced constructs as the Breit-Pauli and Dirac multielectron Hamiltonian. Modern computational techniques, of importance with problems involving very heavy molecules, are outlined in Chapter 4. These include the relativistic effective core potentials, ab initio CASSCF, CI, and RCI techniques. Chapter 5 describes relativistic symmetry using the double group symmetry of molecules and the classification of relativistic electronic states and is of special importance to chemists or spectroscopists interested in computing or analyzing electronic states of molecules containing very heavy atoms. An exceptional introduction to one of chemistry's foremost analytical techniques, Relativistic Effects in Chemistry is also evidence of the still unending reverberations of Einstein's revolutionary theory.

Relativistic Effects in Chemistry, Set

Relativistic Effects in Chemistry, Set PDF Author: Krishnan Balasubramanian
Publisher: Wiley-Interscience
ISBN: 9780471181842
Category : Science
Languages : en
Pages : 0

Book Description
A practical, comprehensive reference for relativistic quantum chemistry Relativistic Effects in Chemistry is a comprehensive reference, and the only book to provide comprehensive computational results of all covered species. Covering all aspects of relativistic quantum chemistry, this set is split into two volumes for ease of use: Part A describes basic theory and techniques used to study the relativistic effects of chemical bonding and spectroscopic properties of molecules containing both main group and transition metal atoms; Part B describes very heavy atoms, and provides results of computations on clusters, halides, hydrides, chalconides, lanthanides, and actinides, including metals in fullerene cages.

Relativistic Electronic Structure Theory - Fundamentals

Relativistic Electronic Structure Theory - Fundamentals PDF Author:
Publisher: Elsevier
ISBN: 0080540465
Category : Science
Languages : en
Pages : 947

Book Description
The first volume of this two part series is concerned with the fundamental aspects of relativistic quantum theory, outlining the enormous progress made in the last twenty years in this field. The aim was to create a book such that researchers who become interested in this exciting new field find it useful as a textbook, and do not have to rely on a rather large number of specialized papers published in this area. · No title is currently available that deals with new developments in relativistic quantum electronic structure theory · Interesting and relevant to graduate students in chemistry and physics as well as to all researchers in the field of quantum chemistry · As treatment of heavy elements becomes more important, there will be a constant demand for this title

Relativistic Methods for Chemists

Relativistic Methods for Chemists PDF Author: Maria Barysz
Publisher: Springer Science & Business Media
ISBN: 1402099754
Category : Science
Languages : en
Pages : 622

Book Description
“Relativistic Methods for Chemists”, written by a highly qualified team of authors, is targeted at both experimentalists and theoreticians interested in the area of relativistic effects in atomic and molecular systems and processes and in their consequences for the interpretation of the heavy element’s chemistry. The theoretical part of the book focuses on the relativistic methods for molecular calculations discussing relativistic two-component theory, density functional theory, pseudopotentials and correlations. The experimentally oriented chapters describe the use of relativistic methods in different applications focusing on the design of new materials based on heavy element compounds, the role of the spin-orbit coupling in photochemistry and photobiology, and chirality and its relations to relativistic description of matter and radiation. This book is written at an intermediate level in order to appeal to a broader audience than just experts working in the field of relativistic theory.

Recent Advances in Relativistic Molecular Theory

Recent Advances in Relativistic Molecular Theory PDF Author: Kimihiko Hirao
Publisher: World Scientific
ISBN: 9812387099
Category : Science
Languages : en
Pages : 343

Book Description
Relativistic effects, though minor in light atoms, increase rapidly in magnitude as the atomic number increases. For heavy atom species, it becomes necessary to discard the Schr”dinger equation in favor of the Dirac equation. Construction of an effective many-body Hamiltonian that accurately accounts for both relativistic and electron correlation effects in many-electron systems is a challenge. It is only in the past 20?25 years that relativistic quantum chemistry has emerged as a field of research in its own right, and it seems certain that relativistic many-electron calculations of molecular properties will assume increasing importance in the years ahead as relativistic quantum chemistry finds a wider range of applications.With the increasing use of relativistic quantum chemical techniques in chemistry, there is an obvious need to provide experts' reviews of the methods and algorithms. This volume aims to disseminate aspects of relativistic many-electron theories and their exciting developments by practitioners. Together, the nine chapters provide an in-depth account of the most important topics of contemporary research in relativistic quantum chemistry, ranging from quasirelativistic effective core potential methods to relativistic coupled cluster theory.

Relativistic Quantum Chemistry

Relativistic Quantum Chemistry PDF Author: Markus Reiher
Publisher: John Wiley & Sons
ISBN: 3527627499
Category : Science
Languages : en
Pages : 692

Book Description
Written by two researchers in the field, this book is a reference to explain the principles and fundamentals in a self-contained, complete and consistent way. Much attention is paid to the didactical value, with the chapters interconnected and based on each other. From the contents: * Fundamentals * Relativistic Theory of a Free Electron: Diracï¿1⁄2s Equation * Dirac Theory of a Single Electron in a Central Potential * Many-Electron Theory I: Quantum Electrodynamics * Many-Electron Theory II: Dirac-Hartree-Fock Theory * Elimination of the Small Component * Unitary Transformation Schemes * Relativistic Density Functional Theory * Physical Observables and Molecular Properties * Interpretive Approach to Relativistic Quantum Chemistry From beginning to end, the authors deduce all the concepts and rules, such that readers are able to understand the fundamentals and principles behind the theory. Essential reading for theoretical chemists and physicists.

Introduction to Relativistic Quantum Chemistry

Introduction to Relativistic Quantum Chemistry PDF Author: Kenneth G. Dyall
Publisher: Oxford University Press
ISBN: 0190286377
Category : Science
Languages : en
Pages : 544

Book Description
This book provides an introduction to the essentials of relativistic effects in quantum chemistry, and a reference work that collects all the major developments in this field. It is designed for the graduate student and the computational chemist with a good background in nonrelativistic theory. In addition to explaining the necessary theory in detail, at a level that the non-expert and the student should readily be able to follow, the book discusses the implementation of the theory and practicalities of its use in calculations. After a brief introduction to classical relativity and electromagnetism, the Dirac equation is presented, and its symmetry, atomic solutions, and interpretation are explored. Four-component molecular methods are then developed: self-consistent field theory and the use of basis sets, double-group and time-reversal symmetry, correlation methods, molecular properties, and an overview of relativistic density functional theory. The emphases in this section are on the basics of relativistic theory and how relativistic theory differs from nonrelativistic theory. Approximate methods are treated next, starting with spin separation in the Dirac equation, and proceeding to the Foldy-Wouthuysen, Douglas-Kroll, and related transformations, Breit-Pauli and direct perturbation theory, regular approximations, matrix approximations, and pseudopotential and model potential methods. For each of these approximations, one-electron operators and many-electron methods are developed, spin-free and spin-orbit operators are presented, and the calculation of electric and magnetic properties is discussed. The treatment of spin-orbit effects with correlation rounds off the presentation of approximate methods. The book concludes with a discussion of the qualitative changes in the picture of structure and bonding that arise from the inclusion of relativity.

The Effects of Relativity in Atoms, Molecules, and the Solid State

The Effects of Relativity in Atoms, Molecules, and the Solid State PDF Author: Stephen Wilson
Publisher: Springer Science & Business Media
ISBN: 1461537029
Category : Science
Languages : en
Pages : 341

Book Description
Recent years have seen a growing interest in the effects of relativity in atoms, molecules and solids. On the one hand, this can be seen as result of the growing awareness of the importance of relativity in describing the properties of heavy atoms and systems containing them. This has been fueled by the inadequacy of physical models which either neglect relativity or which treat it as a small perturbation. On the other hand, it is dependent upon the technological developments which have resulted in computers powerful enough to make calculations on heavy atoms and on systems containing heavy atoms meaningful. Vector processing and, more recently, parallel processing techniques are playing an increasingly vital role in rendering the algorithms which arise in relativistic studies tractable. This has been exemplified in atomic structure theory, where the dominant role of the central nuclear charge simplifies the problem enough to permit some prediction to be made with high precision, especially for the highly ionized atoms of importance in plasma physics and in laser confinement studies. Today's sophisticated physical models of the atom derived from quantum electrodynamics would be intractable without recourse to modern computational machinery. Relativistic atomic structure calculations have a history dating from the early attempts of Swirles in the mid 1930's but continue to provide one of the primary test beds of modern theoretical physics.