Relation Between Abstract Homotopy and Geometric Homotopy PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Relation Between Abstract Homotopy and Geometric Homotopy PDF full book. Access full book title Relation Between Abstract Homotopy and Geometric Homotopy by Sadanand Verma. Download full books in PDF and EPUB format.

Relation Between Abstract Homotopy and Geometric Homotopy

Relation Between Abstract Homotopy and Geometric Homotopy PDF Author: Sadanand Verma
Publisher:
ISBN:
Category : Homotopy theory
Languages : en
Pages : 242

Book Description


Relation Between Abstract Homotopy and Geometric Homotopy

Relation Between Abstract Homotopy and Geometric Homotopy PDF Author: Sadanand Verma
Publisher:
ISBN:
Category : Homotopy theory
Languages : en
Pages : 242

Book Description


Abstract Homotopy And Simple Homotopy Theory

Abstract Homotopy And Simple Homotopy Theory PDF Author: K Heiner Kamps
Publisher: World Scientific
ISBN: 9814502553
Category : Mathematics
Languages : en
Pages : 476

Book Description
The abstract homotopy theory is based on the observation that analogues of much of the topological homotopy theory and simple homotopy theory exist in many other categories (e.g. spaces over a fixed base, groupoids, chain complexes, module categories). Studying categorical versions of homotopy structure, such as cylinders and path space constructions, enables not only a unified development of many examples of known homotopy theories but also reveals the inner working of the classical spatial theory. This demonstrates the logical interdependence of properties (in particular the existence of certain Kan fillers in associated cubical sets) and results (Puppe sequences, Vogt's Iemma, Dold's theorem on fibre homotopy equivalences, and homotopy coherence theory).

Motivic Homotopy Theory

Motivic Homotopy Theory PDF Author: Bjorn Ian Dundas
Publisher: Springer Science & Business Media
ISBN: 3540458972
Category : Mathematics
Languages : en
Pages : 228

Book Description
This book is based on lectures given at a summer school on motivic homotopy theory at the Sophus Lie Centre in Nordfjordeid, Norway, in August 2002. Aimed at graduate students in algebraic topology and algebraic geometry, it contains background material from both of these fields, as well as the foundations of motivic homotopy theory. It will serve as a good introduction as well as a convenient reference for a broad group of mathematicians to this important and fascinating new subject. Vladimir Voevodsky is one of the founders of the theory and received the Fields medal for his work, and the other authors have all done important work in the subject.

Categorical Homotopy Theory

Categorical Homotopy Theory PDF Author: Emily Riehl
Publisher: Cambridge University Press
ISBN: 1139952633
Category : Mathematics
Languages : en
Pages : 371

Book Description
This book develops abstract homotopy theory from the categorical perspective with a particular focus on examples. Part I discusses two competing perspectives by which one typically first encounters homotopy (co)limits: either as derived functors definable when the appropriate diagram categories admit a compatible model structure, or through particular formulae that give the right notion in certain examples. Emily Riehl unifies these seemingly rival perspectives and demonstrates that model structures on diagram categories are irrelevant. Homotopy (co)limits are explained to be a special case of weighted (co)limits, a foundational topic in enriched category theory. In Part II, Riehl further examines this topic, separating categorical arguments from homotopical ones. Part III treats the most ubiquitous axiomatic framework for homotopy theory - Quillen's model categories. Here, Riehl simplifies familiar model categorical lemmas and definitions by focusing on weak factorization systems. Part IV introduces quasi-categories and homotopy coherence.

Homotopical Algebra

Homotopical Algebra PDF Author: Daniel G. Quillen
Publisher: Springer
ISBN: 3540355235
Category : Mathematics
Languages : en
Pages : 165

Book Description


Modern Classical Homotopy Theory

Modern Classical Homotopy Theory PDF Author: Jeffrey Strom
Publisher: American Mathematical Soc.
ISBN: 0821852868
Category : Mathematics
Languages : en
Pages : 862

Book Description
The core of classical homotopy theory is a body of ideas and theorems that emerged in the 1950s and was later largely codified in the notion of a model category. This core includes the notions of fibration and cofibration; CW complexes; long fiber and cofiber sequences; loop spaces and suspensions; and so on. Brown's representability theorems show that homology and cohomology are also contained in classical homotopy theory. This text develops classical homotopy theory from a modern point of view, meaning that the exposition is informed by the theory of model categories and that homotopy limits and colimits play central roles. The exposition is guided by the principle that it is generally preferable to prove topological results using topology (rather than algebra). The language and basic theory of homotopy limits and colimits make it possible to penetrate deep into the subject with just the rudiments of algebra. The text does reach advanced territory, including the Steenrod algebra, Bott periodicity, localization, the Exponent Theorem of Cohen, Moore, and Neisendorfer, and Miller's Theorem on the Sullivan Conjecture. Thus the reader is given the tools needed to understand and participate in research at (part of) the current frontier of homotopy theory. Proofs are not provided outright. Rather, they are presented in the form of directed problem sets. To the expert, these read as terse proofs; to novices they are challenges that draw them in and help them to thoroughly understand the arguments.

Homotopy Type Theory: Univalent Foundations of Mathematics

Homotopy Type Theory: Univalent Foundations of Mathematics PDF Author:
Publisher: Univalent Foundations
ISBN:
Category :
Languages : en
Pages : 484

Book Description


Algebraic Topology of Finite Topological Spaces and Applications

Algebraic Topology of Finite Topological Spaces and Applications PDF Author: Jonathan A. Barmak
Publisher: Springer Science & Business Media
ISBN: 3642220029
Category : Mathematics
Languages : en
Pages : 184

Book Description
This volume deals with the theory of finite topological spaces and its relationship with the homotopy and simple homotopy theory of polyhedra. The interaction between their intrinsic combinatorial and topological structures makes finite spaces a useful tool for studying problems in Topology, Algebra and Geometry from a new perspective. In particular, the methods developed in this manuscript are used to study Quillen's conjecture on the poset of p-subgroups of a finite group and the Andrews-Curtis conjecture on the 3-deformability of contractible two-dimensional complexes. This self-contained work constitutes the first detailed exposition on the algebraic topology of finite spaces. It is intended for topologists and combinatorialists, but it is also recommended for advanced undergraduate students and graduate students with a modest knowledge of Algebraic Topology.

Simplicial Homotopy Theory

Simplicial Homotopy Theory PDF Author: Paul G. Goerss
Publisher: Birkhäuser
ISBN: 3034887078
Category : Mathematics
Languages : en
Pages : 520

Book Description
Since the beginning of the modern era of algebraic topology, simplicial methods have been used systematically and effectively for both computation and basic theory. With the development of Quillen's concept of a closed model category and, in particular, a simplicial model category, this collection of methods has become the primary way to describe non-abelian homological algebra and to address homotopy-theoretical issues in a variety of fields, including algebraic K-theory. This book supplies a modern exposition of these ideas, emphasizing model category theoretical techniques. Discussed here are the homotopy theory of simplicial sets, and other basic topics such as simplicial groups, Postnikov towers, and bisimplicial sets. The more advanced material includes homotopy limits and colimits, localization with respect to a map and with respect to a homology theory, cosimplicial spaces, and homotopy coherence. Interspersed throughout are many results and ideas well-known to experts, but uncollected in the literature. Intended for second-year graduate students and beyond, this book introduces many of the basic tools of modern homotopy theory. An extensive background in topology is not assumed.

Cubical Homotopy Theory

Cubical Homotopy Theory PDF Author: Brian A. Munson
Publisher: Cambridge University Press
ISBN: 1107030250
Category : Mathematics
Languages : en
Pages : 649

Book Description
A modern, example-driven introduction to cubical diagrams and related topics such as homotopy limits and cosimplicial spaces.