Regulation of and by the Plant Cell Wall PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Regulation of and by the Plant Cell Wall PDF full book. Access full book title Regulation of and by the Plant Cell Wall by Georgia Drakakaki. Download full books in PDF and EPUB format.

Regulation of and by the Plant Cell Wall

Regulation of and by the Plant Cell Wall PDF Author: Georgia Drakakaki
Publisher: Frontiers Media SA
ISBN: 2889638049
Category :
Languages : en
Pages : 221

Book Description


Regulation of and by the Plant Cell Wall

Regulation of and by the Plant Cell Wall PDF Author: Georgia Drakakaki
Publisher: Frontiers Media SA
ISBN: 2889638049
Category :
Languages : en
Pages : 221

Book Description


Molecular Biology of the Cell

Molecular Biology of the Cell PDF Author:
Publisher:
ISBN: 9780815332183
Category : Cells
Languages : en
Pages : 0

Book Description


Plant Cell Walls

Plant Cell Walls PDF Author: Peter Albersheim
Publisher: Garland Science
ISBN: 1136843582
Category : Science
Languages : en
Pages : 430

Book Description
Plant cell walls are complex, dynamic cellular structures essential for plant growth, development, physiology and adaptation. Plant Cell Walls provides an in depth and diverse view of the microanatomy, biosynthesis and molecular physiology of these cellular structures, both in the life of the plant and in their use for bioproducts and biofuels. Plant Cell Walls is a textbook for upper-level undergraduates and graduate students, as well as a professional-level reference book. Over 400 drawings, micrographs, and photographs provide visual insight into the latest research, as well as the uses of plant cell walls in everyday life, and their applications in biotechnology. Illustrated panels concisely review research methods and tools; a list of key terms is given at the end of each chapter; and extensive references organized by concept headings provide readers with guidance for entry into plant cell wall literature. Cell wall material is of considerable importance to the biofuel, food, timber, and pulp and paper industries as well as being a major focus of research in plant growth and sustainability that are of central interest in present day agriculture and biotechnology. The production and use of plants for biofuel and bioproducts in a time of need for responsible global carbon use requires a deep understanding of the fundamental biology of plants and their cell walls. Such an understanding will lead to improved plant processes and materials, and help provide a sustainable resource for meeting the future bioenergy and bioproduct needs of humankind.

Water Stress in Plants

Water Stress in Plants PDF Author: Ismail M. M. Rahman
Publisher: BoD – Books on Demand
ISBN: 9535126202
Category : Science
Languages : en
Pages : 130

Book Description
Water stress in plants is caused by the water deficit, as induced possibly by drought or high soil salinity. The prime consequence of water stress in plants is the disruption in the agricultural production, resulting in food shortage. The plants, however, try to adapt to the stress conditions using biochemical and physiological interventions. The edited compilation is an attempt to provide new insights into the mechanism and adaptation aspects of water stress in plants through a thoughtful mixture of viewpoints. We hope that the content of the book will be useful for the researchers working with the plant diversity-related environmental aspects and also provide suggestions for the strategists.

Plant Development and Evolution

Plant Development and Evolution PDF Author:
Publisher: Academic Press
ISBN: 0128098058
Category : Science
Languages : en
Pages : 662

Book Description
Plant Development and Evolution, the latest release in the Current Topics in Developmental Biology series, highlights new advances in the field, with this new volume presenting interesting chapters on the Evolution of the plant body plan, Lateral root development and its role in evolutionary adaptation, the Development of the vascular system, the Development of the shoot apical meristem and phyllotaxis, the Evolution of leaf diversity, the Evolution of regulatory networks in land plants, The role of programed cell death in plant development, the Development and evolution of inflorescence architecture, the Molecular regulation of flower development, the Pre-meiotic another development, and much more. - Provides the authority and expertise of leading contributors from an international board of authors - Presents the latest release in the Current Topics in Developmental Biology series - Updated release includes the latest information on Plant Development and Evolution

The Plant Cell Wall

The Plant Cell Wall PDF Author: Jocelyn K. C. Rose
Publisher: CRC Press
ISBN: 9780849328114
Category : Science
Languages : en
Pages : 408

Book Description
Enzymes, lignin, proteins, cellulose, pectin, kinase.

Handbook of Fungal Biotechnology

Handbook of Fungal Biotechnology PDF Author: Dilip K. Arora
Publisher: CRC Press
ISBN: 9780203027356
Category : Science
Languages : en
Pages : 778

Book Description
The Handbook of Fungal Biotechnology offers the newest developments from the frontiers of fungal biochemical and molecular processes and industrial and semi-industrial applications of fungi. This second edition highlights the need for the integration of a number of scientific disciplines and technologies in modern fungal biotechnology and reigns as

Forage Cell Wall Structure and Digestibility

Forage Cell Wall Structure and Digestibility PDF Author: H. G. Jung
Publisher:
ISBN:
Category : Nature
Languages : en
Pages : 832

Book Description
Organization of forage plants tissue. Utilization of forage fiber by ruminants. Perspectives of cell wall biodegradation-session synopsis. Quantitative analysis of cell wall components. Analysis of forage cell wall polysaccharides. Application of methods for the investigation of lignin structure. Analysis of plant cell walls-session synopsis. Composition and structure of cell wall polysaccharides in forages. Lignin/hydroxycinnamic acid/polycinnamic complexes: synthetic models for regiochemical characterization. Comprehensive model of the lignified plant cell wall. Structure of forage cell walls-session synopsis. Cell wall polysaccharide interactions and degradability. Cell wall lignification and degradability . Machanistic models of forage cell wall degradation. Cell wall matrix interactions and degradation-session synopsis. Microbial adhesion and degradation of plants cell walls. Microbial ecology of cell wall fermentation. Enzymatic hydrolysis of forage cell walls. Microbial and molecular mechanisms of cell wall degradation-session synopsis. Particle-size reduction by ruminants-effects of cell wall. Kinetics of cell wall digestion and passage in ruminants., Influence of feeding management on ruminant fiber digestibility., Cell wall degradation in the ruminant-session synopsis. Cell wall biosynthesis and its regulation. Environmental and genetic effects on cell wall composition and digestibility. Postharvest treatment of fibrous feedstuffs to improve their nutritive value. Machanisms for altering cell wall utilization-session synopsis.

Plant Cell Walls

Plant Cell Walls PDF Author: Nicholas C. Carpita
Publisher: Springer
ISBN: 9401006687
Category : Science
Languages : en
Pages : 333

Book Description
This work is a comprehensive collection of articles that cover aspects of cell wall research in the genomic era. Some 2500 genes are involved in some way in wall biogenesis and turnover, from generation of substrates, to polysaccharide and lignin synthesis, assembly, and rearrangement in the wall. Although a great number of genes and gene families remain to be characterized, this issue provides a census of the genes that have been discovered so far. The articles comprising this issue not only illustrate the enormous progress made in identifying the wealth of wall-related genes but they also show the future directions and how far we have to go. As cell walls are an enormously important source of raw material, we anticipate that cell-wall-related genes are of significant economic importance. Examples include the modification of pectin-cross-linking or cell-cell adhesion to increase shelf life of fruits and vegetables, the enhancement of dietary fiber contents of cereals, the improvement of yield and quality of fibers, and the relative allocation of carbon to wall biomass for use as biofuels. The book is intended for academic and professional scientists working in the area of plant biology as well as material chemists and engineers, and food scientists who define new ways to use cell walls.

Regulation of Plant Cells, Cell Walls and Development by Mechanical Signals

Regulation of Plant Cells, Cell Walls and Development by Mechanical Signals PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 3

Book Description
The overall goal of the revised scope of work for the final year of funding was to characterize cell wall biosynthesis in developing cotyledons and in the shoot apical meristem of Arabidopsis thaliana, as a way of learning about developmental control of cell wall biosynthesis in plants, and interactions between cell wall biosynthesis and the microtubule cytoskeleton. The proposed work had two parts - to look at the effect of mutation in the SPIRAL2 gene on microtubule organization and reorganization, and to thoroughly characterize the glycosyltransferase genes expressed in shoot apical meristems by RNA-seq experiments, by in situ hybridization of the RNAs expressed in the meristem, and by antibody staining of the products of the glycosyltransferases in meristems. Both parts were completed; the spiral2 mutant was found to speed microtubule reorientation after ablation of adjacent cells, supporting our hypothesis that reorganization correlates with microtubule severing, the rate of which is increased by the mutation. The glycosyltransferase characterization was completed and published as Yang et al. (2016). Among the new things learned was that primary cell wall biosynthesis is strongly controlled both by cell type, and by stage of cell cycle, implying not only that different, even adjacent, cells can have different sugar linkages in their (nonshared) walls, but also that a surprisingly large proportion of glycosyltransferases is regulated in the cell cycle, and therefore that the cell cycle regulates wall maturation to a degree previously unrecognized.