Regularization Methods in Banach Spaces PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Regularization Methods in Banach Spaces PDF full book. Access full book title Regularization Methods in Banach Spaces by Thomas Schuster. Download full books in PDF and EPUB format.

Regularization Methods in Banach Spaces

Regularization Methods in Banach Spaces PDF Author: Thomas Schuster
Publisher: Walter de Gruyter
ISBN: 3110255723
Category : Mathematics
Languages : en
Pages : 296

Book Description
Regularization methods aimed at finding stable approximate solutions are a necessary tool to tackle inverse and ill-posed problems. Inverse problems arise in a large variety of applications ranging from medical imaging and non-destructive testing via finance to systems biology. Many of these problems belong to the class of parameter identification problems in partial differential equations (PDEs) and thus are computationally demanding and mathematically challenging. Hence there is a substantial need for stable and efficient solvers for this kind of problems as well as for a rigorous convergence analysis of these methods. This monograph consists of five parts. Part I motivates the importance of developing and analyzing regularization methods in Banach spaces by presenting four applications which intrinsically demand for a Banach space setting and giving a brief glimpse of sparsity constraints. Part II summarizes all mathematical tools that are necessary to carry out an analysis in Banach spaces. Part III represents the current state-of-the-art concerning Tikhonov regularization in Banach spaces. Part IV about iterative regularization methods is concerned with linear operator equations and the iterative solution of nonlinear operator equations by gradient type methods and the iteratively regularized Gauß-Newton method. Part V finally outlines the method of approximate inverse which is based on the efficient evaluation of the measured data with reconstruction kernels.

Regularization Methods in Banach Spaces

Regularization Methods in Banach Spaces PDF Author: Thomas Schuster
Publisher: Walter de Gruyter
ISBN: 3110255723
Category : Mathematics
Languages : en
Pages : 296

Book Description
Regularization methods aimed at finding stable approximate solutions are a necessary tool to tackle inverse and ill-posed problems. Inverse problems arise in a large variety of applications ranging from medical imaging and non-destructive testing via finance to systems biology. Many of these problems belong to the class of parameter identification problems in partial differential equations (PDEs) and thus are computationally demanding and mathematically challenging. Hence there is a substantial need for stable and efficient solvers for this kind of problems as well as for a rigorous convergence analysis of these methods. This monograph consists of five parts. Part I motivates the importance of developing and analyzing regularization methods in Banach spaces by presenting four applications which intrinsically demand for a Banach space setting and giving a brief glimpse of sparsity constraints. Part II summarizes all mathematical tools that are necessary to carry out an analysis in Banach spaces. Part III represents the current state-of-the-art concerning Tikhonov regularization in Banach spaces. Part IV about iterative regularization methods is concerned with linear operator equations and the iterative solution of nonlinear operator equations by gradient type methods and the iteratively regularized Gauß-Newton method. Part V finally outlines the method of approximate inverse which is based on the efficient evaluation of the measured data with reconstruction kernels.

Regularization Algorithms for Ill-Posed Problems

Regularization Algorithms for Ill-Posed Problems PDF Author: Anatoly B. Bakushinsky
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110556383
Category : Mathematics
Languages : en
Pages : 447

Book Description
This specialized and authoritative book contains an overview of modern approaches to constructing approximations to solutions of ill-posed operator equations, both linear and nonlinear. These approximation schemes form a basis for implementable numerical algorithms for the stable solution of operator equations arising in contemporary mathematical modeling, and in particular when solving inverse problems of mathematical physics. The book presents in detail stable solution methods for ill-posed problems using the methodology of iterative regularization of classical iterative schemes and the techniques of finite dimensional and finite difference approximations of the problems under study. Special attention is paid to ill-posed Cauchy problems for linear operator differential equations and to ill-posed variational inequalities and optimization problems. The readers are expected to have basic knowledge in functional analysis and differential equations. The book will be of interest to applied mathematicians and specialists in mathematical modeling and inverse problems, and also to advanced students in these fields. Contents Introduction Regularization Methods For Linear Equations Finite Difference Methods Iterative Regularization Methods Finite-Dimensional Iterative Processes Variational Inequalities and Optimization Problems

Regularization in Banach Spaces - Convergence Rates Theory

Regularization in Banach Spaces - Convergence Rates Theory PDF Author: Torsten Hein
Publisher: Logos Verlag Berlin GmbH
ISBN: 3832527451
Category : Mathematics
Languages : en
Pages : 174

Book Description
Motivated by their successful application in image restoring and sparsity reconstruction this manuscript deals with regularization theory of linear and nonlinear inverse and ill-posed problems in Banach space settings. Whereas regularization in Hilbert spaces has been widely studied in literature for a long period the developement and investigation of regularization methods in Banach spaces have become a field of modern research. The manuscript is twofolded. The first part deals with convergence rates theory for Tikhonov regularization as classical regularization method. In particular, generalizations of well-established results in Hilbert spaces are presented in the Banach space situation. Since the numerical effort of Tikhonov regularization in applications is rather high iterative approaches were considered as alternative regularization variants in the second part. In particular, two Gradient-type methods were presented and their behaviour concerning convergence and stability is investigated. For one of the methods, additionally, a convergence rates result is formulated. All the theoretical results are illustrated by some numerical examples.

Iterative Regularization Methods for Nonlinear Ill-Posed Problems

Iterative Regularization Methods for Nonlinear Ill-Posed Problems PDF Author: Barbara Kaltenbacher
Publisher: Walter de Gruyter
ISBN: 311020827X
Category : Mathematics
Languages : en
Pages : 205

Book Description
Nonlinear inverse problems appear in many applications, and typically they lead to mathematical models that are ill-posed, i.e., they are unstable under data perturbations. Those problems require a regularization, i.e., a special numerical treatment. This book presents regularization schemes which are based on iteration methods, e.g., nonlinear Landweber iteration, level set methods, multilevel methods and Newton type methods.

Regularization Methods for Ill-Posed Optimal Control Problems

Regularization Methods for Ill-Posed Optimal Control Problems PDF Author: Frank Pörner
Publisher: BoD – Books on Demand
ISBN: 3958260861
Category : Mathematics
Languages : en
Pages : 181

Book Description
Ill-posed optimization problems appear in a wide range of mathematical applications, and their numerical solution requires the use of appropriate regularization techniques. In order to understand these techniques, a thorough analysis is inevitable. The main subject of this book are quadratic optimal control problems subject to elliptic linear or semi-linear partial differential equations. Depending on the structure of the differential equation, different regularization techniques are employed, and their analysis leads to novel results such as rate of convergence estimates.

Operator Theory, Functional Analysis and Applications

Operator Theory, Functional Analysis and Applications PDF Author: M. Amélia Bastos
Publisher: Springer Nature
ISBN: 3030519457
Category : Mathematics
Languages : en
Pages : 654

Book Description
This book presents 30 articles on the topic areas discussed at the 30th “International Workshop on Operator Theory and its Applications”, held in Lisbon in July 2019. The contributions include both expository essays and original research papers reflecting recent advances in the traditional IWOTA areas and emerging adjacent fields, as well as the applications of Operator Theory and Functional Analysis. The topics range from C*–algebras and Banach *–algebras, Sturm-Liouville theory, integrable systems, dilation theory, frame theory, Toeplitz, Hankel, and singular integral operators, to questions from lattice, group and matrix theories, complex analysis, harmonic analysis, and function spaces. Given its scope, the book is chiefly intended for researchers and graduate students in the areas of Operator Theory, Functional Analysis, their applications and adjacent fields.

New Trends in Parameter Identification for Mathematical Models

New Trends in Parameter Identification for Mathematical Models PDF Author: Bernd Hofmann
Publisher: Birkhäuser
ISBN: 3319708244
Category : Mathematics
Languages : en
Pages : 347

Book Description
The Proceedings volume contains 16 contributions to the IMPA conference “New Trends in Parameter Identification for Mathematical Models”, Rio de Janeiro, Oct 30 – Nov 3, 2017, integrating the “Chemnitz Symposium on Inverse Problems on Tour”. This conference is part of the “Thematic Program on Parameter Identification in Mathematical Models” organized at IMPA in October and November 2017. One goal is to foster the scientific collaboration between mathematicians and engineers from the Brazialian, European and Asian communities. Main topics are iterative and variational regularization methods in Hilbert and Banach spaces for the stable approximate solution of ill-posed inverse problems, novel methods for parameter identification in partial differential equations, problems of tomography , solution of coupled conduction-radiation problems at high temperatures, and the statistical solution of inverse problems with applications in physics.

Inverse Problems and Related Topics

Inverse Problems and Related Topics PDF Author: Jin Cheng
Publisher: Springer Nature
ISBN: 9811515921
Category : Mathematics
Languages : en
Pages : 310

Book Description
This volume contains 13 chapters, which are extended versions of the presentations at International Conference on Inverse Problems at Fudan University, Shanghai, China, October 12-14, 2018, in honor of Masahiro Yamamoto on the occasion of his 60th anniversary. The chapters are authored by world-renowned researchers and rising young talents, and are updated accounts of various aspects of the researches on inverse problems. The volume covers theories of inverse problems for partial differential equations, regularization methods, and related topics from control theory. This book addresses a wide audience of researchers and young post-docs and graduate students who are interested in mathematical sciences as well as mathematics.

Material-Integrated Intelligent Systems

Material-Integrated Intelligent Systems PDF Author: Stefan Bosse
Publisher: John Wiley & Sons
ISBN: 3527336060
Category : Technology & Engineering
Languages : en
Pages : 696

Book Description
Combining different perspectives from materials science, engineering, and computer science, this reference provides a unified view of the various aspects necessary for the successful realization of intelligent systems. The editors and authors are from academia and research institutions with close ties to industry, and are thus able to offer first-hand information here. They adopt a unique, three-tiered approach such that readers can gain basic, intermediate, and advanced topical knowledge. The technology section of the book is divided into chapters covering the basics of sensor integration in materials, the challenges associated with this approach, data processing, evaluation, and validation, as well as methods for achieving an autonomous energy supply. The applications part then goes on to showcase typical scenarios where material-integrated intelligent systems are already in use, such as for structural health monitoring and smart textiles.

Handbook of Mathematical Methods in Imaging

Handbook of Mathematical Methods in Imaging PDF Author: Otmar Scherzer
Publisher: Springer Science & Business Media
ISBN: 0387929193
Category : Mathematics
Languages : en
Pages : 1626

Book Description
The Handbook of Mathematical Methods in Imaging provides a comprehensive treatment of the mathematical techniques used in imaging science. The material is grouped into two central themes, namely, Inverse Problems (Algorithmic Reconstruction) and Signal and Image Processing. Each section within the themes covers applications (modeling), mathematics, numerical methods (using a case example) and open questions. Written by experts in the area, the presentation is mathematically rigorous. The entries are cross-referenced for easy navigation through connected topics. Available in both print and electronic forms, the handbook is enhanced by more than 150 illustrations and an extended bibliography. It will benefit students, scientists and researchers in applied mathematics. Engineers and computer scientists working in imaging will also find this handbook useful.