Author: Coxeter
Publisher: Cambridge University Press
ISBN: 9780521201254
Category : Mathematics
Languages : en
Pages : 210
Book Description
The properties of regular solids exercise a fascination which often appeals strongly to the mathematically inclined, whether they are professionals, students or amateurs. In this classic book Professor Coxeter explores these properties in easy stages, introducing the reader to complex polyhedra (a beautiful generalization of regular solids derived from complex numbers) and unexpected relationships with concepts from various branches of mathematics: magic squares, frieze patterns, kaleidoscopes, Cayley diagrams, Clifford surfaces, crystallographic and non-crystallographic groups, kinematics, spherical trigonometry, and algebraic geometry. In the latter half of the book, these preliminary ideas are put together to describe a natural generalization of the Five Platonic Solids. This updated second edition contains a new chapter on Almost Regular Polytopes, with beautiful 'abstract art' drawings. New exercises and discussions have been added throughout the book, including an introduction to Hopf fibration and real representations for two complex polyhedra.
Regular Complex Polytopes
Author: Coxeter
Publisher: Cambridge University Press
ISBN: 9780521201254
Category : Mathematics
Languages : en
Pages : 210
Book Description
The properties of regular solids exercise a fascination which often appeals strongly to the mathematically inclined, whether they are professionals, students or amateurs. In this classic book Professor Coxeter explores these properties in easy stages, introducing the reader to complex polyhedra (a beautiful generalization of regular solids derived from complex numbers) and unexpected relationships with concepts from various branches of mathematics: magic squares, frieze patterns, kaleidoscopes, Cayley diagrams, Clifford surfaces, crystallographic and non-crystallographic groups, kinematics, spherical trigonometry, and algebraic geometry. In the latter half of the book, these preliminary ideas are put together to describe a natural generalization of the Five Platonic Solids. This updated second edition contains a new chapter on Almost Regular Polytopes, with beautiful 'abstract art' drawings. New exercises and discussions have been added throughout the book, including an introduction to Hopf fibration and real representations for two complex polyhedra.
Publisher: Cambridge University Press
ISBN: 9780521201254
Category : Mathematics
Languages : en
Pages : 210
Book Description
The properties of regular solids exercise a fascination which often appeals strongly to the mathematically inclined, whether they are professionals, students or amateurs. In this classic book Professor Coxeter explores these properties in easy stages, introducing the reader to complex polyhedra (a beautiful generalization of regular solids derived from complex numbers) and unexpected relationships with concepts from various branches of mathematics: magic squares, frieze patterns, kaleidoscopes, Cayley diagrams, Clifford surfaces, crystallographic and non-crystallographic groups, kinematics, spherical trigonometry, and algebraic geometry. In the latter half of the book, these preliminary ideas are put together to describe a natural generalization of the Five Platonic Solids. This updated second edition contains a new chapter on Almost Regular Polytopes, with beautiful 'abstract art' drawings. New exercises and discussions have been added throughout the book, including an introduction to Hopf fibration and real representations for two complex polyhedra.
Abstract Regular Polytopes
Author: Peter McMullen
Publisher: Cambridge University Press
ISBN: 9780521814966
Category : Mathematics
Languages : en
Pages : 580
Book Description
Abstract regular polytopes stand at the end of more than two millennia of geometrical research, which began with regular polygons and polyhedra. They are highly symmetric combinatorial structures with distinctive geometric, algebraic or topological properties; in many ways more fascinating than traditional regular polytopes and tessellations. The rapid development of the subject in the past 20 years has resulted in a rich new theory, featuring an attractive interplay of mathematical areas, including geometry, combinatorics, group theory and topology. Abstract regular polytopes and their groups provide an appealing new approach to understanding geometric and combinatorial symmetry. This is the first comprehensive up-to-date account of the subject and its ramifications, and meets a critical need for such a text, because no book has been published in this area of classical and modern discrete geometry since Coxeter's Regular Polytopes (1948) and Regular Complex Polytopes (1974). The book should be of interest to researchers and graduate students in discrete geometry, combinatorics and group theory.
Publisher: Cambridge University Press
ISBN: 9780521814966
Category : Mathematics
Languages : en
Pages : 580
Book Description
Abstract regular polytopes stand at the end of more than two millennia of geometrical research, which began with regular polygons and polyhedra. They are highly symmetric combinatorial structures with distinctive geometric, algebraic or topological properties; in many ways more fascinating than traditional regular polytopes and tessellations. The rapid development of the subject in the past 20 years has resulted in a rich new theory, featuring an attractive interplay of mathematical areas, including geometry, combinatorics, group theory and topology. Abstract regular polytopes and their groups provide an appealing new approach to understanding geometric and combinatorial symmetry. This is the first comprehensive up-to-date account of the subject and its ramifications, and meets a critical need for such a text, because no book has been published in this area of classical and modern discrete geometry since Coxeter's Regular Polytopes (1948) and Regular Complex Polytopes (1974). The book should be of interest to researchers and graduate students in discrete geometry, combinatorics and group theory.
The Geometry of Higher-Dimensional Polytopes
Author: Zhizhin, Gennadiy Vladimirovich
Publisher: IGI Global
ISBN: 1522569693
Category : Technology & Engineering
Languages : en
Pages : 301
Book Description
The majority of the chemical elements form chemical compounds with molecules of higher dimension (i.e., substantially exceeding three). This fact is very important for the analysis of molecular interactions in various areas: nanomedicine, nanotoxicology, and quantum biology. The Geometry of Higher-Dimensional Polytopes contains innovative research on the methods and applications of the structures of binary compounds. It explores the study of geometry polytopes from a higher-dimensional perspective, taking into account the features of polytopes that are models of chemical compounds. While highlighting topics including chemical compounds, symmetry transformation, and DNA structures, this book is ideally designed for researchers, academicians, and students seeking current research on dimensions present in binary compounds.
Publisher: IGI Global
ISBN: 1522569693
Category : Technology & Engineering
Languages : en
Pages : 301
Book Description
The majority of the chemical elements form chemical compounds with molecules of higher dimension (i.e., substantially exceeding three). This fact is very important for the analysis of molecular interactions in various areas: nanomedicine, nanotoxicology, and quantum biology. The Geometry of Higher-Dimensional Polytopes contains innovative research on the methods and applications of the structures of binary compounds. It explores the study of geometry polytopes from a higher-dimensional perspective, taking into account the features of polytopes that are models of chemical compounds. While highlighting topics including chemical compounds, symmetry transformation, and DNA structures, this book is ideally designed for researchers, academicians, and students seeking current research on dimensions present in binary compounds.
Regular Polytopes
Author: Harold Scott Macdonald Coxeter
Publisher: Courier Corporation
ISBN: 9780486614809
Category : Mathematics
Languages : en
Pages : 372
Book Description
Foremost book available on polytopes, incorporating ancient Greek and most modern work. Discusses polygons, polyhedrons, and multi-dimensional polytopes. Definitions of symbols. Includes 8 tables plus many diagrams and examples. 1963 edition.
Publisher: Courier Corporation
ISBN: 9780486614809
Category : Mathematics
Languages : en
Pages : 372
Book Description
Foremost book available on polytopes, incorporating ancient Greek and most modern work. Discusses polygons, polyhedrons, and multi-dimensional polytopes. Definitions of symbols. Includes 8 tables plus many diagrams and examples. 1963 edition.
Convex Polytopes
Author: Branko Grünbaum
Publisher: Springer Science & Business Media
ISBN: 1461300193
Category : Mathematics
Languages : en
Pages : 561
Book Description
"The original edition [...] inspired a whole generation of grateful workers in polytope theory. Without it, it is doubtful whether many of the subsequent advances in the subject would have been made. The many seeds it sowed have since grown into healthy trees, with vigorous branches and luxuriant foliage. It is good to see it in print once again." --Peter McMullen, University College London
Publisher: Springer Science & Business Media
ISBN: 1461300193
Category : Mathematics
Languages : en
Pages : 561
Book Description
"The original edition [...] inspired a whole generation of grateful workers in polytope theory. Without it, it is doubtful whether many of the subsequent advances in the subject would have been made. The many seeds it sowed have since grown into healthy trees, with vigorous branches and luxuriant foliage. It is good to see it in print once again." --Peter McMullen, University College London
Regular Complex Polytopes
Author: H. S. M. Coxeter
Publisher: Cambridge University Press
ISBN: 9780521394901
Category : Mathematics
Languages : en
Pages : 224
Book Description
The properties of regular solids exercise a fascination which often appeals strongly to the mathematically inclined, whether they are professionals, students or amateurs. In this classic book Professor Coxeter explores these properties in easy stages, introducing the reader to complex polyhedra (a beautiful generalization of regular solids derived from complex numbers) and unexpected relationships with concepts from various branches of mathematics: magic squares, frieze patterns, kaleidoscopes, Cayley diagrams, Clifford surfaces, crystallographic and non-crystallographic groups, kinematics, spherical trigonometry, and algebraic geometry. In the latter half of the book, these preliminary ideas are put together to describe a natural generalization of the Five Platonic Solids. This updated second edition contains a new chapter on Almost Regular Polytopes, with beautiful 'abstract art' drawings. New exercises and discussions have been added throughout the book, including an introduction to Hopf fibration and real representations for two complex polyhedra.
Publisher: Cambridge University Press
ISBN: 9780521394901
Category : Mathematics
Languages : en
Pages : 224
Book Description
The properties of regular solids exercise a fascination which often appeals strongly to the mathematically inclined, whether they are professionals, students or amateurs. In this classic book Professor Coxeter explores these properties in easy stages, introducing the reader to complex polyhedra (a beautiful generalization of regular solids derived from complex numbers) and unexpected relationships with concepts from various branches of mathematics: magic squares, frieze patterns, kaleidoscopes, Cayley diagrams, Clifford surfaces, crystallographic and non-crystallographic groups, kinematics, spherical trigonometry, and algebraic geometry. In the latter half of the book, these preliminary ideas are put together to describe a natural generalization of the Five Platonic Solids. This updated second edition contains a new chapter on Almost Regular Polytopes, with beautiful 'abstract art' drawings. New exercises and discussions have been added throughout the book, including an introduction to Hopf fibration and real representations for two complex polyhedra.
An Introduction to Convex Polytopes
Author: Arne Brondsted
Publisher: Springer Science & Business Media
ISBN: 1461211484
Category : Mathematics
Languages : en
Pages : 168
Book Description
The aim of this book is to introduce the reader to the fascinating world of convex polytopes. The highlights of the book are three main theorems in the combinatorial theory of convex polytopes, known as the Dehn-Sommerville Relations, the Upper Bound Theorem and the Lower Bound Theorem. All the background information on convex sets and convex polytopes which is m~eded to under stand and appreciate these three theorems is developed in detail. This background material also forms a basis for studying other aspects of polytope theory. The Dehn-Sommerville Relations are classical, whereas the proofs of the Upper Bound Theorem and the Lower Bound Theorem are of more recent date: they were found in the early 1970's by P. McMullen and D. Barnette, respectively. A famous conjecture of P. McMullen on the charac terization off-vectors of simplicial or simple polytopes dates from the same period; the book ends with a brief discussion of this conjecture and some of its relations to the Dehn-Sommerville Relations, the Upper Bound Theorem and the Lower Bound Theorem. However, the recent proofs that McMullen's conditions are both sufficient (L. J. Billera and C. W. Lee, 1980) and necessary (R. P. Stanley, 1980) go beyond the scope of the book. Prerequisites for reading the book are modest: standard linear algebra and elementary point set topology in [R1d will suffice.
Publisher: Springer Science & Business Media
ISBN: 1461211484
Category : Mathematics
Languages : en
Pages : 168
Book Description
The aim of this book is to introduce the reader to the fascinating world of convex polytopes. The highlights of the book are three main theorems in the combinatorial theory of convex polytopes, known as the Dehn-Sommerville Relations, the Upper Bound Theorem and the Lower Bound Theorem. All the background information on convex sets and convex polytopes which is m~eded to under stand and appreciate these three theorems is developed in detail. This background material also forms a basis for studying other aspects of polytope theory. The Dehn-Sommerville Relations are classical, whereas the proofs of the Upper Bound Theorem and the Lower Bound Theorem are of more recent date: they were found in the early 1970's by P. McMullen and D. Barnette, respectively. A famous conjecture of P. McMullen on the charac terization off-vectors of simplicial or simple polytopes dates from the same period; the book ends with a brief discussion of this conjecture and some of its relations to the Dehn-Sommerville Relations, the Upper Bound Theorem and the Lower Bound Theorem. However, the recent proofs that McMullen's conditions are both sufficient (L. J. Billera and C. W. Lee, 1980) and necessary (R. P. Stanley, 1980) go beyond the scope of the book. Prerequisites for reading the book are modest: standard linear algebra and elementary point set topology in [R1d will suffice.
Lectures on Polytopes
Author: Günter M. Ziegler
Publisher: Springer
ISBN: 9780387943657
Category : Mathematics
Languages : en
Pages : 388
Book Description
Based on a graduate course at the Technische Universität, Berlin, these lectures present a wealth of material on the modern theory of convex polytopes. The straightforward exposition features many illustrations, and complete proofs for most theorems. With only linear algebra as a prerequisite, it takes the reader quickly from the basics to topics of recent research. The lectures introduce basic facts about polytopes, with an emphasis on methods that yield the results, discuss important examples and elegant constructions, and show the excitement of current work in the field. They will provide interesting and enjoyable reading for researchers as well as students.
Publisher: Springer
ISBN: 9780387943657
Category : Mathematics
Languages : en
Pages : 388
Book Description
Based on a graduate course at the Technische Universität, Berlin, these lectures present a wealth of material on the modern theory of convex polytopes. The straightforward exposition features many illustrations, and complete proofs for most theorems. With only linear algebra as a prerequisite, it takes the reader quickly from the basics to topics of recent research. The lectures introduce basic facts about polytopes, with an emphasis on methods that yield the results, discuss important examples and elegant constructions, and show the excitement of current work in the field. They will provide interesting and enjoyable reading for researchers as well as students.
The Geometry and Topology of Coxeter Groups
Author: Michael Davis
Publisher: Princeton University Press
ISBN: 0691131384
Category : Mathematics
Languages : en
Pages : 601
Book Description
The Geometry and Topology of Coxeter Groups is a comprehensive and authoritative treatment of Coxeter groups from the viewpoint of geometric group theory. Groups generated by reflections are ubiquitous in mathematics, and there are classical examples of reflection groups in spherical, Euclidean, and hyperbolic geometry. Any Coxeter group can be realized as a group generated by reflection on a certain contractible cell complex, and this complex is the principal subject of this book. The book explains a theorem of Moussong that demonstrates that a polyhedral metric on this cell complex is nonpositively curved, meaning that Coxeter groups are "CAT(0) groups." The book describes the reflection group trick, one of the most potent sources of examples of aspherical manifolds. And the book discusses many important topics in geometric group theory and topology, including Hopf's theory of ends; contractible manifolds and homology spheres; the Poincaré Conjecture; and Gromov's theory of CAT(0) spaces and groups. Finally, the book examines connections between Coxeter groups and some of topology's most famous open problems concerning aspherical manifolds, such as the Euler Characteristic Conjecture and the Borel and Singer conjectures.
Publisher: Princeton University Press
ISBN: 0691131384
Category : Mathematics
Languages : en
Pages : 601
Book Description
The Geometry and Topology of Coxeter Groups is a comprehensive and authoritative treatment of Coxeter groups from the viewpoint of geometric group theory. Groups generated by reflections are ubiquitous in mathematics, and there are classical examples of reflection groups in spherical, Euclidean, and hyperbolic geometry. Any Coxeter group can be realized as a group generated by reflection on a certain contractible cell complex, and this complex is the principal subject of this book. The book explains a theorem of Moussong that demonstrates that a polyhedral metric on this cell complex is nonpositively curved, meaning that Coxeter groups are "CAT(0) groups." The book describes the reflection group trick, one of the most potent sources of examples of aspherical manifolds. And the book discusses many important topics in geometric group theory and topology, including Hopf's theory of ends; contractible manifolds and homology spheres; the Poincaré Conjecture; and Gromov's theory of CAT(0) spaces and groups. Finally, the book examines connections between Coxeter groups and some of topology's most famous open problems concerning aspherical manifolds, such as the Euler Characteristic Conjecture and the Borel and Singer conjectures.
Polytopes, Rings, and K-Theory
Author: Winfried Bruns
Publisher: Springer Science & Business Media
ISBN: 0387763562
Category : Mathematics
Languages : en
Pages : 461
Book Description
This book examines interactions of polyhedral discrete geometry and algebra. What makes this book unique is the presentation of several central results in all three areas of the exposition - from discrete geometry, to commutative algebra, and K-theory.
Publisher: Springer Science & Business Media
ISBN: 0387763562
Category : Mathematics
Languages : en
Pages : 461
Book Description
This book examines interactions of polyhedral discrete geometry and algebra. What makes this book unique is the presentation of several central results in all three areas of the exposition - from discrete geometry, to commutative algebra, and K-theory.