Author: Alexander Lipton
Publisher: OUP Oxford
ISBN: 0191648248
Category : Business & Economics
Languages : en
Pages : 704
Book Description
From the late 1990s, the spectacular growth of a secondary market for credit through derivatives has been matched by the emergence of mathematical modelling analysing the credit risk embedded in these contracts. This book aims to provide a broad and deep overview of this modelling, covering statistical analysis and techniques, modelling of default of both single and multiple entities, counterparty risk, Gaussian and non-Gaussian modelling, and securitisation. Both reduced-form and firm-value models for the default of single entities are considered in detail, with extensive discussion of both their theoretical underpinnings and practical usage in pricing and risk. For multiple entity modelling, the now notorious Gaussian copula is discussed with analysis of its shortcomings, as well as a wide range of alternative approaches including multivariate extensions to both firm-value and reduced form models, and continuous-time Markov chains. One important case of multiple entities modelling - counterparty risk in credit derivatives - is further explored in two dedicated chapters. Alternative non-Gaussian approaches to modelling are also discussed, including extreme-value theory and saddle-point approximations to deal with tail risk. Finally, the recent growth in securitisation is covered, including house price modelling and pricing models for asset-backed CDOs. The current credit crisis has brought modelling of the previously arcane credit markets into the public arena. Lipton and Rennie with their excellent team of contributors, provide a timely discussion of the mathematical modelling that underpins both credit derivatives and securitisation. Though technical in nature, the pros and cons of various approaches attempt to provide a balanced view of the role that mathematical modelling plays in the modern credit markets. This book will appeal to students and researchers in statistics, economics, and finance, as well as practitioners, credit traders, and quantitative analysts
The Oxford Handbook of Credit Derivatives
Author: Alexander Lipton
Publisher: OUP Oxford
ISBN: 0191648248
Category : Business & Economics
Languages : en
Pages : 704
Book Description
From the late 1990s, the spectacular growth of a secondary market for credit through derivatives has been matched by the emergence of mathematical modelling analysing the credit risk embedded in these contracts. This book aims to provide a broad and deep overview of this modelling, covering statistical analysis and techniques, modelling of default of both single and multiple entities, counterparty risk, Gaussian and non-Gaussian modelling, and securitisation. Both reduced-form and firm-value models for the default of single entities are considered in detail, with extensive discussion of both their theoretical underpinnings and practical usage in pricing and risk. For multiple entity modelling, the now notorious Gaussian copula is discussed with analysis of its shortcomings, as well as a wide range of alternative approaches including multivariate extensions to both firm-value and reduced form models, and continuous-time Markov chains. One important case of multiple entities modelling - counterparty risk in credit derivatives - is further explored in two dedicated chapters. Alternative non-Gaussian approaches to modelling are also discussed, including extreme-value theory and saddle-point approximations to deal with tail risk. Finally, the recent growth in securitisation is covered, including house price modelling and pricing models for asset-backed CDOs. The current credit crisis has brought modelling of the previously arcane credit markets into the public arena. Lipton and Rennie with their excellent team of contributors, provide a timely discussion of the mathematical modelling that underpins both credit derivatives and securitisation. Though technical in nature, the pros and cons of various approaches attempt to provide a balanced view of the role that mathematical modelling plays in the modern credit markets. This book will appeal to students and researchers in statistics, economics, and finance, as well as practitioners, credit traders, and quantitative analysts
Publisher: OUP Oxford
ISBN: 0191648248
Category : Business & Economics
Languages : en
Pages : 704
Book Description
From the late 1990s, the spectacular growth of a secondary market for credit through derivatives has been matched by the emergence of mathematical modelling analysing the credit risk embedded in these contracts. This book aims to provide a broad and deep overview of this modelling, covering statistical analysis and techniques, modelling of default of both single and multiple entities, counterparty risk, Gaussian and non-Gaussian modelling, and securitisation. Both reduced-form and firm-value models for the default of single entities are considered in detail, with extensive discussion of both their theoretical underpinnings and practical usage in pricing and risk. For multiple entity modelling, the now notorious Gaussian copula is discussed with analysis of its shortcomings, as well as a wide range of alternative approaches including multivariate extensions to both firm-value and reduced form models, and continuous-time Markov chains. One important case of multiple entities modelling - counterparty risk in credit derivatives - is further explored in two dedicated chapters. Alternative non-Gaussian approaches to modelling are also discussed, including extreme-value theory and saddle-point approximations to deal with tail risk. Finally, the recent growth in securitisation is covered, including house price modelling and pricing models for asset-backed CDOs. The current credit crisis has brought modelling of the previously arcane credit markets into the public arena. Lipton and Rennie with their excellent team of contributors, provide a timely discussion of the mathematical modelling that underpins both credit derivatives and securitisation. Though technical in nature, the pros and cons of various approaches attempt to provide a balanced view of the role that mathematical modelling plays in the modern credit markets. This book will appeal to students and researchers in statistics, economics, and finance, as well as practitioners, credit traders, and quantitative analysts
Commodity Price Dynamics
Author: Craig Pirrong
Publisher: Cambridge University Press
ISBN: 1139501976
Category : Business & Economics
Languages : en
Pages : 239
Book Description
Commodities have become an important component of many investors' portfolios and the focus of much political controversy over the past decade. This book utilizes structural models to provide a better understanding of how commodities' prices behave and what drives them. It exploits differences across commodities and examines a variety of predictions of the models to identify where they work and where they fail. The findings of the analysis are useful to scholars, traders and policy makers who want to better understand often puzzling - and extreme - movements in the prices of commodities from aluminium to oil to soybeans to zinc.
Publisher: Cambridge University Press
ISBN: 1139501976
Category : Business & Economics
Languages : en
Pages : 239
Book Description
Commodities have become an important component of many investors' portfolios and the focus of much political controversy over the past decade. This book utilizes structural models to provide a better understanding of how commodities' prices behave and what drives them. It exploits differences across commodities and examines a variety of predictions of the models to identify where they work and where they fail. The findings of the analysis are useful to scholars, traders and policy makers who want to better understand often puzzling - and extreme - movements in the prices of commodities from aluminium to oil to soybeans to zinc.
Financial Modelling with Jump Processes
Author: Peter Tankov
Publisher: CRC Press
ISBN: 1135437947
Category : Business & Economics
Languages : en
Pages : 552
Book Description
WINNER of a Riskbook.com Best of 2004 Book Award! During the last decade, financial models based on jump processes have acquired increasing popularity in risk management and option pricing. Much has been published on the subject, but the technical nature of most papers makes them difficult for nonspecialists to understand, and the mathematic
Publisher: CRC Press
ISBN: 1135437947
Category : Business & Economics
Languages : en
Pages : 552
Book Description
WINNER of a Riskbook.com Best of 2004 Book Award! During the last decade, financial models based on jump processes have acquired increasing popularity in risk management and option pricing. Much has been published on the subject, but the technical nature of most papers makes them difficult for nonspecialists to understand, and the mathematic
Optimization-Based Models for Measuring and Hedging Risk in Fixed Income Markets
Author: Johan Hagenbjörk
Publisher: Linköping University Electronic Press
ISBN: 917929927X
Category :
Languages : sv
Pages : 156
Book Description
The global fixed income market is an enormous financial market whose value by far exceeds that of the public stock markets. The interbank market consists of interest rate derivatives, whose primary purpose is to manage interest rate risk. The credit market primarily consists of the bond market, which links investors to companies, institutions, and governments with borrowing needs. This dissertation takes an optimization perspective upon modeling both these areas of the fixed-income market. Legislators on the national markets require financial actors to value their financial assets in accordance with market prices. Thus, prices of many assets, which are not publicly traded, must be determined mathematically. The financial quantities needed for pricing are not directly observable but must be measured through solving inverse optimization problems. These measurements are based on the available market prices, which are observed with various degrees of measurement noise. For the interbank market, the relevant financial quantities consist of term structures of interest rates, which are curves displaying the market rates for different maturities. For the bond market, credit risk is an additional factor that can be modeled through default intensity curves and term structures of recovery rates in case of default. By formulating suitable optimization models, the different underlying financial quantities can be measured in accordance with observable market prices, while conditions for economic realism are imposed. Measuring and managing risk is closely connected to the measurement of the underlying financial quantities. Through a data-driven method, we can show that six systematic risk factors can be used to explain almost all variance in the interest rate curves. By modeling the dynamics of these six risk factors, possible outcomes can be simulated in the form of term structure scenarios. For short-term simulation horizons, this results in a representation of the portfolio value distribution that is consistent with the realized outcomes from historically observed term structures. This enables more accurate measurements of interest rate risk, where our proposed method exhibits both lower risk and lower pricing errors compared to traditional models. We propose a method for decomposing changes in portfolio values for an arbitrary portfolio into the risk factors that affect the value of each instrument. By demonstrating the method for the six systematic risk factors identified for the interbank market, we show that almost all changes in portfolio value and portfolio variance can be attributed to these risk factors. Additional risk factors and approximation errors are gathered into two terms, which can be studied to ensure the quality of the performance attribution, and possibly improve it. To eliminate undesired risk within trading books, banks use hedging. Traditional methods do not take transaction costs into account. We, therefore, propose a method for managing the risks in the interbank market through a stochastic optimization model that considers transaction costs. This method is based on a scenario approximation of the optimization problem where the six systematic risk factors are simulated, and the portfolio variance is weighted against the transaction costs. This results in a method that is preferred over the traditional methods for all risk-averse investors. For the credit market, we use data from the bond market in combination with the interbank market to make accurate measurements of the financial quantities. We address the notoriously difficult problem of separating default risk from recovery risk. In addition to the previous identified six systematic risk factors for risk-free interests, we identify four risk factors that explain almost all variance in default intensities, while a single risk factor seems sufficient to model the recovery risk. Overall, this is a higher number of risk factors than is usually found in the literature. Through a simple model, we can measure the variance in bond prices in terms of these systematic risk factors, and through performance attribution, we relate these values to the empirically realized variances from the quoted bond prices. De globala ränte- och kreditmarknaderna är enorma finansiella marknader vars sammanlagda värden vida överstiger de publika aktiemarknadernas. Räntemarknaden består av räntederivat vars främsta användningsområde är hantering av ränterisker. Kreditmarknaden utgörs i första hand av obligationsmarknaden som syftar till att förmedla pengar från investerare till företag, institutioner och stater med upplåningsbehov. Denna avhandling fokuserar på att utifrån ett optimeringsperspektiv modellera både ränte- och obligationsmarknaden. Lagstiftarna på de nationella marknaderna kräver att de finansiella aktörerna värderar sina finansiella tillgångar i enlighet med marknadspriser. Därmed måste priserna på många instrument, som inte handlas publikt, beräknas matematiskt. De finansiella storheter som krävs för denna prissättning är inte direkt observerbara, utan måste mätas genom att lösa inversa optimeringsproblem. Dessa mätningar görs utifrån tillgängliga marknadspriser, som observeras med varierande grad av mätbrus. För räntemarknaden utgörs de relevanta finansiella storheterna av räntekurvor som åskådliggör marknadsräntorna för olika löptider. För obligationsmarknaden utgör kreditrisken en ytterligare faktor som modelleras via fallissemangsintensitetskurvor och kurvor kopplade till förväntat återvunnet kapital vid eventuellt fallissemang. Genom att formulera lämpliga optimeringsmodeller kan de olika underliggande finansiella storheterna mätas i enlighet med observerbara marknadspriser samtidigt som ekonomisk realism eftersträvas. Mätning och hantering av risker är nära kopplat till mätningen av de underliggande finansiella storheterna. Genom en datadriven metod kan vi visa att sex systematiska riskfaktorer kan användas för att förklara nästan all varians i räntekurvorna. Genom att modellera dynamiken i dessa sex riskfaktorer kan tänkbara utfall för räntekurvor simuleras. För kortsiktiga simuleringshorisonter resulterar detta i en representation av fördelningen av portföljvärden som väl överensstämmer med de realiserade utfallen från historiskt observerade räntekurvor. Detta möjliggör noggrannare mätningar av ränterisk där vår föreslagna metod uppvisar såväl lägre risk som mindre prissättningsfel jämfört med traditionella modeller. Vi föreslår en metod för att dekomponera portföljutvecklingen för en godtycklig portfölj till de riskfaktorer som påverkar värdet för respektive instrument. Genom att demonstrera metoden för de sex systematiska riskfaktorerna som identifierats för räntemarknaden visar vi att nästan all portföljutveckling och portföljvarians kan härledas till dessa riskfaktorer. Övriga riskfaktorer och approximationsfel samlas i två termer, vilka kan användas för att säkerställa och eventuellt förbättra kvaliteten i prestationshärledningen. För att eliminera oönskad risk i sina tradingböcker använder banker sig av hedging. Traditionella metoder tar ingen hänsyn till transaktionskostnader. Vi föreslår därför en metod för att hantera riskerna på räntemarknaden genom en stokastisk optimeringsmodell som också tar hänsyn till transaktionskostnader. Denna metod bygger på en scenarioapproximation av optimeringsproblemet där de sex systematiska riskfaktorerna simuleras och portföljvariansen vägs mot transaktionskostnaderna. Detta resulterar i en metod som, för alla riskaverta investerare, är att föredra framför de traditionella metoderna. På kreditmarknaden använder vi data från obligationsmarknaden i kombination räntemarknaden för att göra noggranna mätningar av de finansiella storheterna. Vi angriper det erkänt svåra problemet att separera fallissemangsrisk från återvinningsrisk. Förutom de tidigare sex systematiska riskfaktorerna för riskfri ränta, identifierar vi fyra riskfaktorer som förklarar nästan all varians i fallissemangsintensiteter, medan en enda riskfaktor tycks räcka för att modellera återvinningsrisken. Sammanlagt är detta ett större antal riskfaktorer än vad som brukar användas i litteraturen. Via en enkel modell kan vi mäta variansen i obligationspriser i termer av dessa systematiska riskfaktorer och genom prestationshärledningen relatera dessa värden till de empiriskt realiserade varianserna från kvoterade obligationspriser.
Publisher: Linköping University Electronic Press
ISBN: 917929927X
Category :
Languages : sv
Pages : 156
Book Description
The global fixed income market is an enormous financial market whose value by far exceeds that of the public stock markets. The interbank market consists of interest rate derivatives, whose primary purpose is to manage interest rate risk. The credit market primarily consists of the bond market, which links investors to companies, institutions, and governments with borrowing needs. This dissertation takes an optimization perspective upon modeling both these areas of the fixed-income market. Legislators on the national markets require financial actors to value their financial assets in accordance with market prices. Thus, prices of many assets, which are not publicly traded, must be determined mathematically. The financial quantities needed for pricing are not directly observable but must be measured through solving inverse optimization problems. These measurements are based on the available market prices, which are observed with various degrees of measurement noise. For the interbank market, the relevant financial quantities consist of term structures of interest rates, which are curves displaying the market rates for different maturities. For the bond market, credit risk is an additional factor that can be modeled through default intensity curves and term structures of recovery rates in case of default. By formulating suitable optimization models, the different underlying financial quantities can be measured in accordance with observable market prices, while conditions for economic realism are imposed. Measuring and managing risk is closely connected to the measurement of the underlying financial quantities. Through a data-driven method, we can show that six systematic risk factors can be used to explain almost all variance in the interest rate curves. By modeling the dynamics of these six risk factors, possible outcomes can be simulated in the form of term structure scenarios. For short-term simulation horizons, this results in a representation of the portfolio value distribution that is consistent with the realized outcomes from historically observed term structures. This enables more accurate measurements of interest rate risk, where our proposed method exhibits both lower risk and lower pricing errors compared to traditional models. We propose a method for decomposing changes in portfolio values for an arbitrary portfolio into the risk factors that affect the value of each instrument. By demonstrating the method for the six systematic risk factors identified for the interbank market, we show that almost all changes in portfolio value and portfolio variance can be attributed to these risk factors. Additional risk factors and approximation errors are gathered into two terms, which can be studied to ensure the quality of the performance attribution, and possibly improve it. To eliminate undesired risk within trading books, banks use hedging. Traditional methods do not take transaction costs into account. We, therefore, propose a method for managing the risks in the interbank market through a stochastic optimization model that considers transaction costs. This method is based on a scenario approximation of the optimization problem where the six systematic risk factors are simulated, and the portfolio variance is weighted against the transaction costs. This results in a method that is preferred over the traditional methods for all risk-averse investors. For the credit market, we use data from the bond market in combination with the interbank market to make accurate measurements of the financial quantities. We address the notoriously difficult problem of separating default risk from recovery risk. In addition to the previous identified six systematic risk factors for risk-free interests, we identify four risk factors that explain almost all variance in default intensities, while a single risk factor seems sufficient to model the recovery risk. Overall, this is a higher number of risk factors than is usually found in the literature. Through a simple model, we can measure the variance in bond prices in terms of these systematic risk factors, and through performance attribution, we relate these values to the empirically realized variances from the quoted bond prices. De globala ränte- och kreditmarknaderna är enorma finansiella marknader vars sammanlagda värden vida överstiger de publika aktiemarknadernas. Räntemarknaden består av räntederivat vars främsta användningsområde är hantering av ränterisker. Kreditmarknaden utgörs i första hand av obligationsmarknaden som syftar till att förmedla pengar från investerare till företag, institutioner och stater med upplåningsbehov. Denna avhandling fokuserar på att utifrån ett optimeringsperspektiv modellera både ränte- och obligationsmarknaden. Lagstiftarna på de nationella marknaderna kräver att de finansiella aktörerna värderar sina finansiella tillgångar i enlighet med marknadspriser. Därmed måste priserna på många instrument, som inte handlas publikt, beräknas matematiskt. De finansiella storheter som krävs för denna prissättning är inte direkt observerbara, utan måste mätas genom att lösa inversa optimeringsproblem. Dessa mätningar görs utifrån tillgängliga marknadspriser, som observeras med varierande grad av mätbrus. För räntemarknaden utgörs de relevanta finansiella storheterna av räntekurvor som åskådliggör marknadsräntorna för olika löptider. För obligationsmarknaden utgör kreditrisken en ytterligare faktor som modelleras via fallissemangsintensitetskurvor och kurvor kopplade till förväntat återvunnet kapital vid eventuellt fallissemang. Genom att formulera lämpliga optimeringsmodeller kan de olika underliggande finansiella storheterna mätas i enlighet med observerbara marknadspriser samtidigt som ekonomisk realism eftersträvas. Mätning och hantering av risker är nära kopplat till mätningen av de underliggande finansiella storheterna. Genom en datadriven metod kan vi visa att sex systematiska riskfaktorer kan användas för att förklara nästan all varians i räntekurvorna. Genom att modellera dynamiken i dessa sex riskfaktorer kan tänkbara utfall för räntekurvor simuleras. För kortsiktiga simuleringshorisonter resulterar detta i en representation av fördelningen av portföljvärden som väl överensstämmer med de realiserade utfallen från historiskt observerade räntekurvor. Detta möjliggör noggrannare mätningar av ränterisk där vår föreslagna metod uppvisar såväl lägre risk som mindre prissättningsfel jämfört med traditionella modeller. Vi föreslår en metod för att dekomponera portföljutvecklingen för en godtycklig portfölj till de riskfaktorer som påverkar värdet för respektive instrument. Genom att demonstrera metoden för de sex systematiska riskfaktorerna som identifierats för räntemarknaden visar vi att nästan all portföljutveckling och portföljvarians kan härledas till dessa riskfaktorer. Övriga riskfaktorer och approximationsfel samlas i två termer, vilka kan användas för att säkerställa och eventuellt förbättra kvaliteten i prestationshärledningen. För att eliminera oönskad risk i sina tradingböcker använder banker sig av hedging. Traditionella metoder tar ingen hänsyn till transaktionskostnader. Vi föreslår därför en metod för att hantera riskerna på räntemarknaden genom en stokastisk optimeringsmodell som också tar hänsyn till transaktionskostnader. Denna metod bygger på en scenarioapproximation av optimeringsproblemet där de sex systematiska riskfaktorerna simuleras och portföljvariansen vägs mot transaktionskostnaderna. Detta resulterar i en metod som, för alla riskaverta investerare, är att föredra framför de traditionella metoderna. På kreditmarknaden använder vi data från obligationsmarknaden i kombination räntemarknaden för att göra noggranna mätningar av de finansiella storheterna. Vi angriper det erkänt svåra problemet att separera fallissemangsrisk från återvinningsrisk. Förutom de tidigare sex systematiska riskfaktorerna för riskfri ränta, identifierar vi fyra riskfaktorer som förklarar nästan all varians i fallissemangsintensiteter, medan en enda riskfaktor tycks räcka för att modellera återvinningsrisken. Sammanlagt är detta ett större antal riskfaktorer än vad som brukar användas i litteraturen. Via en enkel modell kan vi mäta variansen i obligationspriser i termer av dessa systematiska riskfaktorer och genom prestationshärledningen relatera dessa värden till de empiriskt realiserade varianserna från kvoterade obligationspriser.
Discrete Choice Methods with Simulation
Author: Kenneth Train
Publisher: Cambridge University Press
ISBN: 0521766559
Category : Business & Economics
Languages : en
Pages : 399
Book Description
This book describes the new generation of discrete choice methods, focusing on the many advances that are made possible by simulation. Researchers use these statistical methods to examine the choices that consumers, households, firms, and other agents make. Each of the major models is covered: logit, generalized extreme value, or GEV (including nested and cross-nested logits), probit, and mixed logit, plus a variety of specifications that build on these basics. Simulation-assisted estimation procedures are investigated and compared, including maximum stimulated likelihood, method of simulated moments, and method of simulated scores. Procedures for drawing from densities are described, including variance reduction techniques such as anithetics and Halton draws. Recent advances in Bayesian procedures are explored, including the use of the Metropolis-Hastings algorithm and its variant Gibbs sampling. The second edition adds chapters on endogeneity and expectation-maximization (EM) algorithms. No other book incorporates all these fields, which have arisen in the past 25 years. The procedures are applicable in many fields, including energy, transportation, environmental studies, health, labor, and marketing.
Publisher: Cambridge University Press
ISBN: 0521766559
Category : Business & Economics
Languages : en
Pages : 399
Book Description
This book describes the new generation of discrete choice methods, focusing on the many advances that are made possible by simulation. Researchers use these statistical methods to examine the choices that consumers, households, firms, and other agents make. Each of the major models is covered: logit, generalized extreme value, or GEV (including nested and cross-nested logits), probit, and mixed logit, plus a variety of specifications that build on these basics. Simulation-assisted estimation procedures are investigated and compared, including maximum stimulated likelihood, method of simulated moments, and method of simulated scores. Procedures for drawing from densities are described, including variance reduction techniques such as anithetics and Halton draws. Recent advances in Bayesian procedures are explored, including the use of the Metropolis-Hastings algorithm and its variant Gibbs sampling. The second edition adds chapters on endogeneity and expectation-maximization (EM) algorithms. No other book incorporates all these fields, which have arisen in the past 25 years. The procedures are applicable in many fields, including energy, transportation, environmental studies, health, labor, and marketing.
Factor Investing and Asset Allocation: A Business Cycle Perspective
Author: Vasant Naik
Publisher: CFA Institute Research Foundation
ISBN: 1944960155
Category : Business & Economics
Languages : en
Pages : 192
Book Description
Publisher: CFA Institute Research Foundation
ISBN: 1944960155
Category : Business & Economics
Languages : en
Pages : 192
Book Description
Trading Volatility
Author: Colin Bennett
Publisher:
ISBN: 9781461108757
Category :
Languages : en
Pages : 316
Book Description
This publication aims to fill the void between books providing an introduction to derivatives, and advanced books whose target audience are members of quantitative modelling community. In order to appeal to the widest audience, this publication tries to assume the least amount of prior knowledge. The content quickly moves onto more advanced subjects in order to concentrate on more practical and advanced topics. "A master piece to learn in a nutshell all the essentials about volatility with a practical and lively approach. A must read!" Carole Bernard, Equity Derivatives Specialist at Bloomberg "This book could be seen as the 'volatility bible'!" Markus-Alexander Flesch, Head of Sales & Marketing at Eurex "I highly recommend this book both for those new to the equity derivatives business, and for more advanced readers. The balance between theory and practice is struck At-The-Money" Paul Stephens, Head of Institutional Marketing at CBOE "One of the best resources out there for the volatility community" Paul Britton, CEO and Founder of Capstone Investment Advisors "Colin has managed to convey often complex derivative and volatility concepts with an admirable simplicity, a welcome change from the all-too-dense tomes one usually finds on the subject" Edmund Shing PhD, former Proprietary Trader at BNP Paribas "In a crowded space, Colin has supplied a useful and concise guide" Gary Delany, Director Europe at the Options Industry Council
Publisher:
ISBN: 9781461108757
Category :
Languages : en
Pages : 316
Book Description
This publication aims to fill the void between books providing an introduction to derivatives, and advanced books whose target audience are members of quantitative modelling community. In order to appeal to the widest audience, this publication tries to assume the least amount of prior knowledge. The content quickly moves onto more advanced subjects in order to concentrate on more practical and advanced topics. "A master piece to learn in a nutshell all the essentials about volatility with a practical and lively approach. A must read!" Carole Bernard, Equity Derivatives Specialist at Bloomberg "This book could be seen as the 'volatility bible'!" Markus-Alexander Flesch, Head of Sales & Marketing at Eurex "I highly recommend this book both for those new to the equity derivatives business, and for more advanced readers. The balance between theory and practice is struck At-The-Money" Paul Stephens, Head of Institutional Marketing at CBOE "One of the best resources out there for the volatility community" Paul Britton, CEO and Founder of Capstone Investment Advisors "Colin has managed to convey often complex derivative and volatility concepts with an admirable simplicity, a welcome change from the all-too-dense tomes one usually finds on the subject" Edmund Shing PhD, former Proprietary Trader at BNP Paribas "In a crowded space, Colin has supplied a useful and concise guide" Gary Delany, Director Europe at the Options Industry Council
Systemic Contingent Claims Analysis
Author: Mr.Andreas A. Jobst
Publisher: International Monetary Fund
ISBN: 1475557531
Category : Business & Economics
Languages : en
Pages : 93
Book Description
The recent global financial crisis has forced a re-examination of risk transmission in the financial sector and how it affects financial stability. Current macroprudential policy and surveillance (MPS) efforts are aimed establishing a regulatory framework that helps mitigate the risk from systemic linkages with a view towards enhancing the resilience of the financial sector. This paper presents a forward-looking framework ("Systemic CCA") to measure systemic solvency risk based on market-implied expected losses of financial institutions with practical applications for the financial sector risk management and the system-wide capital assessment in top-down stress testing. The suggested approach uses advanced contingent claims analysis (CCA) to generate aggregate estimates of the joint default risk of multiple institutions as a conditional tail expectation using multivariate extreme value theory (EVT). In addition, the framework also helps quantify the individual contributions to systemic risk and contingent liabilities of the financial sector during times of stress.
Publisher: International Monetary Fund
ISBN: 1475557531
Category : Business & Economics
Languages : en
Pages : 93
Book Description
The recent global financial crisis has forced a re-examination of risk transmission in the financial sector and how it affects financial stability. Current macroprudential policy and surveillance (MPS) efforts are aimed establishing a regulatory framework that helps mitigate the risk from systemic linkages with a view towards enhancing the resilience of the financial sector. This paper presents a forward-looking framework ("Systemic CCA") to measure systemic solvency risk based on market-implied expected losses of financial institutions with practical applications for the financial sector risk management and the system-wide capital assessment in top-down stress testing. The suggested approach uses advanced contingent claims analysis (CCA) to generate aggregate estimates of the joint default risk of multiple institutions as a conditional tail expectation using multivariate extreme value theory (EVT). In addition, the framework also helps quantify the individual contributions to systemic risk and contingent liabilities of the financial sector during times of stress.
Under-Rewarded Efforts
Author: Santiago Levy Algazi
Publisher: Inter-American Development Bank
ISBN: 1597823058
Category : Business & Economics
Languages : en
Pages : 323
Book Description
Why has an economy that has done so many things right failed to grow fast? Under-Rewarded Efforts traces Mexico’s disappointing growth to flawed microeconomic policies that have suppressed productivity growth and nullified the expected benefits of the country’s reform efforts. Fast growth will not occur doing more of the same or focusing on issues that may be key bottlenecks to productivity growth elsewhere, but not in Mexico. It will only result from inclusive institutions that effectively protect workers against risks, redistribute towards those in need, and simultaneously align entrepreneurs’ and workers’ incentives to raise productivity.
Publisher: Inter-American Development Bank
ISBN: 1597823058
Category : Business & Economics
Languages : en
Pages : 323
Book Description
Why has an economy that has done so many things right failed to grow fast? Under-Rewarded Efforts traces Mexico’s disappointing growth to flawed microeconomic policies that have suppressed productivity growth and nullified the expected benefits of the country’s reform efforts. Fast growth will not occur doing more of the same or focusing on issues that may be key bottlenecks to productivity growth elsewhere, but not in Mexico. It will only result from inclusive institutions that effectively protect workers against risks, redistribute towards those in need, and simultaneously align entrepreneurs’ and workers’ incentives to raise productivity.
How I Became a Quant
Author: Richard R. Lindsey
Publisher: John Wiley & Sons
ISBN: 1118044754
Category : Business & Economics
Languages : en
Pages : 406
Book Description
Praise for How I Became a Quant "Led by two top-notch quants, Richard R. Lindsey and Barry Schachter, How I Became a Quant details the quirky world of quantitative analysis through stories told by some of today's most successful quants. For anyone who might have thought otherwise, there are engaging personalities behind all that number crunching!" --Ira Kawaller, Kawaller & Co. and the Kawaller Fund "A fun and fascinating read. This book tells the story of how academics, physicists, mathematicians, and other scientists became professional investors managing billions." --David A. Krell, President and CEO, International Securities Exchange "How I Became a Quant should be must reading for all students with a quantitative aptitude. It provides fascinating examples of the dynamic career opportunities potentially open to anyone with the skills and passion for quantitative analysis." --Roy D. Henriksson, Chief Investment Officer, Advanced Portfolio Management "Quants"--those who design and implement mathematical models for the pricing of derivatives, assessment of risk, or prediction of market movements--are the backbone of today's investment industry. As the greater volatility of current financial markets has driven investors to seek shelter from increasing uncertainty, the quant revolution has given people the opportunity to avoid unwanted financial risk by literally trading it away, or more specifically, paying someone else to take on the unwanted risk. How I Became a Quant reveals the faces behind the quant revolution, offering you?the?chance to learn firsthand what it's like to be a?quant today. In this fascinating collection of Wall Street war stories, more than two dozen quants detail their roots, roles, and contributions, explaining what they do and how they do it, as well as outlining the sometimes unexpected paths they have followed from the halls of academia to the front lines of an investment revolution.
Publisher: John Wiley & Sons
ISBN: 1118044754
Category : Business & Economics
Languages : en
Pages : 406
Book Description
Praise for How I Became a Quant "Led by two top-notch quants, Richard R. Lindsey and Barry Schachter, How I Became a Quant details the quirky world of quantitative analysis through stories told by some of today's most successful quants. For anyone who might have thought otherwise, there are engaging personalities behind all that number crunching!" --Ira Kawaller, Kawaller & Co. and the Kawaller Fund "A fun and fascinating read. This book tells the story of how academics, physicists, mathematicians, and other scientists became professional investors managing billions." --David A. Krell, President and CEO, International Securities Exchange "How I Became a Quant should be must reading for all students with a quantitative aptitude. It provides fascinating examples of the dynamic career opportunities potentially open to anyone with the skills and passion for quantitative analysis." --Roy D. Henriksson, Chief Investment Officer, Advanced Portfolio Management "Quants"--those who design and implement mathematical models for the pricing of derivatives, assessment of risk, or prediction of market movements--are the backbone of today's investment industry. As the greater volatility of current financial markets has driven investors to seek shelter from increasing uncertainty, the quant revolution has given people the opportunity to avoid unwanted financial risk by literally trading it away, or more specifically, paying someone else to take on the unwanted risk. How I Became a Quant reveals the faces behind the quant revolution, offering you?the?chance to learn firsthand what it's like to be a?quant today. In this fascinating collection of Wall Street war stories, more than two dozen quants detail their roots, roles, and contributions, explaining what they do and how they do it, as well as outlining the sometimes unexpected paths they have followed from the halls of academia to the front lines of an investment revolution.