Redd Site Selection and Spawning Habitat Use by Fall Chinook Salmon

Redd Site Selection and Spawning Habitat Use by Fall Chinook Salmon PDF Author: David R. Geist
Publisher:
ISBN:
Category : Chinook salmon
Languages : en
Pages : 264

Book Description
The spawning habitat associated with fall chinook salmon (Oncorhynchus tshawytscha) redd clusters was investigated in the Hanford Reach of the Columbia River. A conceptual spawning habitat model is proposed that describes how geomorphic features of river channels create hydraulic processes, including hyporheic flows, that influence where salmon spawn in unconstrained reaches of large mainstem alluvial rivers. Spatial point pattern analysis of redds showed that redd clusters averaged approximately 10 hectares in area and their locations were consistent from year to year. The tendency to spawn in clusters suggests fall chinook salmon's use of spawning habitat is highly selective. Hydraulic characteristics of the redd clusters were significantly different than the habitat surrounding them. Velocity and lateral slope of the river bottom were the most important habitat variables in predicting redd site selection. While these variables explained a large proportion of the variance in redd site selection (86 to 96%), some unmeasured factors still accounted for a small percentage of actual spawning site selection. Further investigation showed that the magnitude and chemical characteristics of hyporheic discharge were different between and within two spawning areas. Apparently, fall chinook salmon used chemical and physical cues from the discharge to locate spawning areas. Traditional spawning habitat models could be improved if they: used spawning area-specific, rather than river-specific; spawning characteristics; incorporated hyporheic discharge measurements; and gave further consideration to the geomorphic features that are present in the unconstrained segments of large alluvial rivers. Ultimately the recovery of endangered fall chinook salmon will depend on how well we are able to recreate the characteristics once common in alluvial floodplains of large rivers. The results from this research can be used to better define the relationship between these physical habitat characteristics and fall chinook salmon spawning site selection, and provide more efficient use of limited recovery resources.

Redd Site Selection and Spawning Habitat Use by Fall Chinook Salmon, Hanford Reach, Columbia River

Redd Site Selection and Spawning Habitat Use by Fall Chinook Salmon, Hanford Reach, Columbia River PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 125

Book Description
This report summarizes results of research activities conducted from 1995 through 1998 on identifying the spawning habitat requirements of fall chinook salmon (Oncorhynchus tshawytscha) in the Hanford Reach of the Columbia River. The project investigated whether traditional spawning habitat models could be improved in order to make better predictions of available habitat for fall chinook salmon in the Snake River. Results suggest models could be improved if they used spawning area-specific, rather than river-specific, spawning characteristics; incorporated hyporheic discharge measurements; and gave further consideration to the geomorphic features that are present in the unconstrained segments of large alluvial rivers. Ultimately the recovery of endangered fall chinook salmon will depend on how well we are able to recreate the characteristics once common in alluvial floodplains of large rivers. The results from this research can be used to better define the relationship between these physical habitat characteristics and fall chinook salmon spawning site selection, and provide more efficient use of limited recovery resources. This report is divided into four chapters which were presented in the author's doctoral dissertation which he completed through the Department of Fisheries and Wildlife at Oregon State University. Each of the chapters has been published in peer reviewed journals or is currently under review. Chapter one is a conceptual spawning habitat model that describes how geomorphic features of river channels create hydraulic processes, including hyporheic flows, that influence where salmon spawn in unconstrained reaches of large mainstem alluvial rivers. Chapter two describes the comparison of the physical factors associated with fall chinook salmon redd clusters located at two sites within the Reach. Spatial point pattern analysis of redds showed that redd clusters averaged approximately 10 hectares in area and their locations were consistent from year to year. The tendency to spawn in clusters suggests fall chinook salmon's use of spawning habitat is highly selective. Hydraulic characteristics of the redd clusters were significantly different than the habitat surrounding them. Velocity and lateral slope of the river bottom were the most important habitat variables in predicting redd site selection. While these variables explained a large proportion of the variance in redd site selection (86 to 96%), some unmeasured factors still accounted for a small percentage of actual spawning site selection. Chapter three describes the results from an investigation into the hyporheic characteristics of the two spawning areas studied in chapter two. This investigation showed that the magnitude and chemical characteristics of hyporheic discharge were different between and within two spawning areas. Apparently, fall chinook salmon used chemical and physical cues from the discharge to locate spawning areas. Finally, chapter four describes a unique method that was developed to install piezometers into the cobble bed of the Columbia River.

Spawning Habitat Studies of Hanford Reach Fall Chinook Salmon (Oncorhynchus Tshawytscha), Final Report

Spawning Habitat Studies of Hanford Reach Fall Chinook Salmon (Oncorhynchus Tshawytscha), Final Report PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 186

Book Description
The Pacific Northwest National Laboratory conducted this study for the Bonneville Power Administration (BPA) with funding provided through the Northwest Power and Conservation Council(a) and the BPA Fish and Wildlife Program. The study was conducted in the Hanford Reach of the Columbia River. The goal of study was to determine the physical habitat factors necessary to define the redd capacity of fall Chinook salmon that spawn in large mainstem rivers like the Hanford Reach and Snake River. The study was originally commissioned in FY 1994 and then recommissioned in FY 2000 through the Fish and Wildlife Program rolling review of the Columbia River Basin projects. The work described in this report covers the period from 1994 through 2004; however, the majority of the information comes from the last four years of the study (2000 through 2004). Results from the work conducted from 1994 to 2000 were covered in an earlier report. More than any other stock of Pacific salmon, fall Chinook salmon (Oncorhynchus tshawytscha) have suffered severe impacts from the hydroelectric development in the Columbia River Basin. Fall Chinook salmon rely heavily on mainstem habitats for all phases of their life cycle, and mainstem hydroelectric dams have inundated or blocked areas that were historically used for spawning and rearing. The natural flow pattern that existed in the historic period has been altered by the dams, which in turn have affected the physical and biological template upon which fall Chinook salmon depend upon for successful reproduction. Operation of the dams to produce power to meet short-term needs in electricity (termed power peaking) produces unnatural fluctuations in flow over a 24-hour cycle. These flow fluctuations alter the physical habitat and disrupt the cues that salmon use to select spawning sites, as well as strand fish in near-shore habitat that becomes dewatered. The quality of spawning gravels has been affected by dam construction, flood protection, and agricultural and industrial development. In some cases, the riverbed is armored such that it is more difficult for spawners to move, while in other cases the intrusion of fine sediment into spawning gravels has reduced water flow to sensitive eggs and young fry. Recovery of fall Chinook salmon populations may involve habitat restoration through such actions as dam removal and reservoir drawdown. In addition, habitat protection will be accomplished through set-asides of existing high-quality habitat. A key component to evaluating these actions is quantifying the salmon spawning habitat potential of a given river reach so that realistic recovery goals for salmon abundance can be developed. Quantifying salmon spawning habitat potential requires an understanding of the spawning behavior of Chinook salmon, as well as an understanding of the physical habitat where these fish spawn. Increasingly, fish biologists are recognizing that assessing the physical habitat of riverine systems where salmon spawn goes beyond measuring microhabitat like water depth, velocity, and substrate size. Geomorphic features of the river measured over a range of spatial scales set up the physical template upon which the microhabitat develops, and successful assessments of spawning habitat potential incorporate these geomorphic features. We had three primary objectives for this study. The first objective was to determine the relationship between physical habitats at different spatial scales and fall Chinook salmon spawning locations. The second objective was to estimate the fall Chinook salmon redd capacity for the Reach. The third objective was to suggest a protocol for determining preferable spawning reaches of fall Chinook salmon. To ensure that we collected physical data within habitat that was representative of the full range of potential spawning habitat, the study area was stratified based on geomorphic features of the river using a two-dimensional river channel index that classified the river cross section into one of four shapes based on channel symmetry, depth, and width. We found that this river channel classification system was a good predictor at the scale of a river reach ((almost equal to)1 km) of where fall Chinook salmon would spawn. Using this two-dimensional river channel index, we selected study areas that were representative of the geomorphic classes. A total of nine study sites distributed throughout the middle 27 km of the Reach (study area) were investigated. Four of the study sites were located between river kilometer 575 and 580 in a section of the river where fall Chinook salmon have not spawned since aerial surveys were initiated in the 1940s; four sites were located in the spawning reach (river kilometer [rkm] 590 to 603); and one site was located upstream of the spawning reach (rkm 605).

Evaluation of Fall Chinook and Chum Salmon Spawning Habitat Near Ives and Pierce Islands in the Columbia River, Progress Report 1999-2001

Evaluation of Fall Chinook and Chum Salmon Spawning Habitat Near Ives and Pierce Islands in the Columbia River, Progress Report 1999-2001 PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 152

Book Description
The area around Ives Island below Bonneville Dam on the Columbia River supports spawning populations of chum and fall chinook salmon. Because this area is sensitive to water level fluctuations caused by changes in discharge from Bonneville Dam and from tidal cycles, we initiated a study to quantify flow-dependent changes in available spawning habitat for chum and fall chinook salmon. We conducted surveys to characterize the substrates available in the Ives Island study area. Detailed bathymetry was also obtained to serve as a foundation for two-dimension hydrodynamic modeling, which was used to estimate water velocities, depths, and wetted area over a range of simulated flows. Habitat surveys were conducted and logistic regression was used to identify physical habitat variables that were important in determining the presence of chum and fall chinook salmon redds. The physical habitat data were analyzed using the logistic regression models to create probability coverages for the presence of redds in a Geographic Information System. There was generally good agreement between chum and fall chinook salmon redd locations and areas where we predicted suitable spawning habitat. We found that at Columbia River discharges less than 120 kcfs, an important chum salmon spawning area below the mouth of Hamilton Creek could only be supported by discharge from Hamilton Creek. Chum salmon did not appear to spawn in proportion to habitat availability, however our predictive model did not include all variables known to be important to chum salmon redd-site selection. Fall chinook salmon spawning habitat was less sensitive to flow and the main channel of the Columbia River along Pierce Island was predicted to contain sufficient habitat at all modeled flows.

Inventory of Spawning Habitat Used by Oregon Coastal Fall Chinook Salmon

Inventory of Spawning Habitat Used by Oregon Coastal Fall Chinook Salmon PDF Author: Brett L. Hodgson
Publisher:
ISBN:
Category : Chinook salmon
Languages : en
Pages :

Book Description


Physicochemical Characteristics of the Hyporheic Zone Affect Redd Site Selection of Chum and Fall Chinook Salmon, Columbia River

Physicochemical Characteristics of the Hyporheic Zone Affect Redd Site Selection of Chum and Fall Chinook Salmon, Columbia River PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 26

Book Description
Chum salmon (Oncorhynchus keta) may historically have been the most abundant species of Columbia River salmon, contributing as much as 50% of the total biomass of all salmon in the Pacific Ocean prior to the 1940's (Neave 1961). By the 1950's, however, run sizes to the Columbia River dropped dramatically and in 1999 the National Marine Fisheries Service (NMFS) listed Columbia River chum salmon as threatened under the Endangered Species Act (ESA; NMFS 1999). Habitat degradation, water diversions, harvest, and artificial propagation are the major human-induced factors that have contributed to the species decline (NMFS 1998). Columbia River chum salmon spawn exclusively in the lower river below Bonneville Dam, including an area near Ives Island. The Ives Island chum salmon are part of the Columbia River evolutionary significant unit (ESU) for this species, and are included in the ESA listing. In addition to chum salmon, fall chinook salmon (O. tshawytscha) also spawn at Ives Island. Spawning surveys conducted at Ives Island over the last several years show that chum and fall chinook salmon spawned in clusters in different locations (US Fish and Wildlife Service and Washington Department of Fish and Wildlife, unpublished data). The presence of redd clusters suggested that fish were selecting specific habitat features within the study area (Geist and Dauble 1998). Understanding the specific features of these spawning areas is needed to quantify the amount of habitat available to each species so that minimum flows can be set to protect fish and maintain high quality habitat.

An Evaluation of Spawning Habitat Site Selection Among Upper South Fork Salmon River Chinook Salmon

An Evaluation of Spawning Habitat Site Selection Among Upper South Fork Salmon River Chinook Salmon PDF Author: Kara E. Collier
Publisher:
ISBN:
Category : Salmon
Languages : en
Pages : 84

Book Description


Identification of the Spawning, Rearing, and Migratory Requirements of Fall Chinook Salmon in the Columbia River Basin, Annual Report 1994

Identification of the Spawning, Rearing, and Migratory Requirements of Fall Chinook Salmon in the Columbia River Basin, Annual Report 1994 PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 159

Book Description
Spawning ground surveys were conducted in 1994 as part of a five year study of Snake River chinook salmon Oncorhynchus tshawyacha begun in 1991. Observations of fall chinook salmon spawning in the Snake River were limited to infrequent aerial red counts in the years prior to 1987. From 1987-1990, red counts were made on a limited basis by an interagency team and reported by the Washington Department of Fisheries. Starting in 1991, the U.S. Fish and Wildlife Service (USFWS), and other cooperating agencies and organizations, expanded the scope of spawning ground surveys to include: (1) additional aerial surveys to improve red counts and provide data on the timing of spawning; (2) the validation (ground truthing) of red counts from aerial surveys to improve count accuracy; (3) underwater searches to locate reds in water too deep to allow detection from the air; and (4) bathymetric mapping of spawning sites for characterizing spawning habitat. This document is the 1994 annual progress report for selected studies of fall chinook salmon. The studies were undertaken because of the growing concern about the declining salmon population in the Snake River basin.

Proceedings of the groundwater/surfacewater interactions workshop

Proceedings of the groundwater/surfacewater interactions workshop PDF Author:
Publisher: DIANE Publishing
ISBN: 1428902104
Category :
Languages : en
Pages : 204

Book Description


Identification and Assessment of Fall Chinook Salmon (oncorhynchus Tshawytscha) Spawning Below the Dalles, John Day and McNary Dams

Identification and Assessment of Fall Chinook Salmon (oncorhynchus Tshawytscha) Spawning Below the Dalles, John Day and McNary Dams PDF Author:
Publisher:
ISBN:
Category : Fish surveys
Languages : en
Pages : 0

Book Description
This report describes research conducted from 2001 to 2006 to investigate use of the mainstem Columbia River below The Dalles, John Day and McNary dams by spawning fall Chinook salmon through deep water redd surveys. Initial reconnaissance level surveys conducted in 2001 documented salmon redds below John Day Dam. No redds were observed below The Dalles or McNary dams and researchers concluded that spawning habitat conditions below The Dalles were not conducive to spawning, however, conditions appeared to be well suited below McNary Dam. Comprehensive redd surveys were subsequently conducted below John Day Dam from 2002 to 2006. However, 2006 surveys were incomplete because of high turbidities. No surveys were conducted below the other dams in any other years, but researchers recommended additional surveys below McNary Dam. Redd surveys documented a low of 96 redds in 2002 and a high of 183 in 2004. Expanded estimates for a total redd population below John Day Dam ranged from 880 to 1,597 redds for the same years. A run reconstruction exercise was conducted for the John Day Dam tailrace, to determine what the adult escapement may have been with index escapement estimates ranging from 20,362 (2005) to 57,823 (2003) adult fall Chinook salmon for the comprehensively sampled period (2002 – 2005).