Author: N. A. Orr
Publisher: Springer Nature
ISBN: 3030323579
Category : Science
Languages : en
Pages : 968
Book Description
Few-body physics covers a rich and wide variety of phenomena, ranging from the very lowest energy scales of atomic and molecular physics to high-energy particle physics. The papers contained in the present volume provide an apercu of recent progress in the field from both the theoretical and experimental perspectives and are based on work presented at the “22nd International Conference on Few-Body Problems in Physics”. This book is geared towards academics and graduate students involved in the study of systems which present few-body characteristics and those interested in the related mathematical and computational techniques.
Recent Progress in Few-Body Physics
Author: N. A. Orr
Publisher: Springer Nature
ISBN: 3030323579
Category : Science
Languages : en
Pages : 968
Book Description
Few-body physics covers a rich and wide variety of phenomena, ranging from the very lowest energy scales of atomic and molecular physics to high-energy particle physics. The papers contained in the present volume provide an apercu of recent progress in the field from both the theoretical and experimental perspectives and are based on work presented at the “22nd International Conference on Few-Body Problems in Physics”. This book is geared towards academics and graduate students involved in the study of systems which present few-body characteristics and those interested in the related mathematical and computational techniques.
Publisher: Springer Nature
ISBN: 3030323579
Category : Science
Languages : en
Pages : 968
Book Description
Few-body physics covers a rich and wide variety of phenomena, ranging from the very lowest energy scales of atomic and molecular physics to high-energy particle physics. The papers contained in the present volume provide an apercu of recent progress in the field from both the theoretical and experimental perspectives and are based on work presented at the “22nd International Conference on Few-Body Problems in Physics”. This book is geared towards academics and graduate students involved in the study of systems which present few-body characteristics and those interested in the related mathematical and computational techniques.
Recent Progress in Many-body Theories
Author: Joseph A. Carlson
Publisher: World Scientific
ISBN: 981256957X
Category : Science
Languages : en
Pages : 286
Book Description
Quantum many-body theory has greatly expanded its scope and depth over the past few years, treating more deeply long-standing issues like phase transitions and strongly-correlated systems, and simultaneously expanding into new areas such as cold atom physics and quantum information. This collection of contributions highlights recent advances in all these areas by leaders in their respective fields. Also included are some historic perspectives by L P Gor'kov and S T Belyaev, Feenberg Medal Recipients at this conference, and Nobel Laureate P W Anderson gives his unique outlook on the future of physics.The volume covers the key topics in many-body theory, tied together through advances in theoretical tools and computational techniques, and a unifying theme of fundamental approaches to quantum many-body physics.
Publisher: World Scientific
ISBN: 981256957X
Category : Science
Languages : en
Pages : 286
Book Description
Quantum many-body theory has greatly expanded its scope and depth over the past few years, treating more deeply long-standing issues like phase transitions and strongly-correlated systems, and simultaneously expanding into new areas such as cold atom physics and quantum information. This collection of contributions highlights recent advances in all these areas by leaders in their respective fields. Also included are some historic perspectives by L P Gor'kov and S T Belyaev, Feenberg Medal Recipients at this conference, and Nobel Laureate P W Anderson gives his unique outlook on the future of physics.The volume covers the key topics in many-body theory, tied together through advances in theoretical tools and computational techniques, and a unifying theme of fundamental approaches to quantum many-body physics.
Introduction to Many-Body Physics
Author: Piers Coleman
Publisher: Cambridge University Press
ISBN: 1316432025
Category : Science
Languages : en
Pages : 815
Book Description
A modern, graduate-level introduction to many-body physics in condensed matter, this textbook explains the tools and concepts needed for a research-level understanding of the correlated behavior of quantum fluids. Starting with an operator-based introduction to the quantum field theory of many-body physics, this textbook presents the Feynman diagram approach, Green's functions and finite-temperature many-body physics before developing the path integral approach to interacting systems. Special chapters are devoted to the concepts of Fermi liquid theory, broken symmetry, conduction in disordered systems, superconductivity and the physics of local-moment metals. A strong emphasis on concepts and numerous exercises make this an invaluable course book for graduate students in condensed matter physics. It will also interest students in nuclear, atomic and particle physics.
Publisher: Cambridge University Press
ISBN: 1316432025
Category : Science
Languages : en
Pages : 815
Book Description
A modern, graduate-level introduction to many-body physics in condensed matter, this textbook explains the tools and concepts needed for a research-level understanding of the correlated behavior of quantum fluids. Starting with an operator-based introduction to the quantum field theory of many-body physics, this textbook presents the Feynman diagram approach, Green's functions and finite-temperature many-body physics before developing the path integral approach to interacting systems. Special chapters are devoted to the concepts of Fermi liquid theory, broken symmetry, conduction in disordered systems, superconductivity and the physics of local-moment metals. A strong emphasis on concepts and numerous exercises make this an invaluable course book for graduate students in condensed matter physics. It will also interest students in nuclear, atomic and particle physics.
Recent Developments in Theoretical Physics
Author: Subir Ghosh (Prof.)
Publisher: World Scientific
ISBN: 9814287334
Category : Science
Languages : en
Pages : 438
Book Description
1. Is the end of theoretical physics really in sight? / A. Khare -- 2. Holography, CFT and black hole entropy / P. Majumdar -- 3. Hawking radiation, effective actions and anomalies / R. Banerjee -- 4. Probing dark matter in primordial black holes / A.S. Majumdar -- 5. Physics in the `Once Given' universe / C.S. Unnikrishnan -- 6. Doubly-special relativity / G. Amelino-Camelia -- 7. Nuances of neutrinos / A. Raychaudhuri -- 8. Dynamics of proton spin / A.N. Mitra -- 9. Whither nuclear physics? / A. Abbas -- 10. Generalized Swanson model and its pseudo supersymmetric partners / A. Sinha and P. Roy -- 11. The relevance of berry phase in quantum physics / P. Bandyopadhyay -- 12. Quantum Hamiltonian diagonalization / P. Gosselin, A. Bérard and H. Mohrbach -- 13. The Hall conductivity of spinning anyons / B. Basu -- 14. Quantum annealing and computation / A. Das and B.K. Chakrabarti -- 15. Liouville gravity from Einstein gravity / D. Grumiller and R. Jackiw -- 16. Exact static solutions of a generalized discret ø[symbol] / A. Khare -- 17. A model for flow reversal in two-dimensional convection / K. Kumar [und weitere] -- 18. Euclidean networks and dimensionality / P. Sen -- 19. Equal superposition transformations and quantum random walks / P. Parashar -- 20. Cloning entanglement locally / S.K. Choudhary and R. Rahaman
Publisher: World Scientific
ISBN: 9814287334
Category : Science
Languages : en
Pages : 438
Book Description
1. Is the end of theoretical physics really in sight? / A. Khare -- 2. Holography, CFT and black hole entropy / P. Majumdar -- 3. Hawking radiation, effective actions and anomalies / R. Banerjee -- 4. Probing dark matter in primordial black holes / A.S. Majumdar -- 5. Physics in the `Once Given' universe / C.S. Unnikrishnan -- 6. Doubly-special relativity / G. Amelino-Camelia -- 7. Nuances of neutrinos / A. Raychaudhuri -- 8. Dynamics of proton spin / A.N. Mitra -- 9. Whither nuclear physics? / A. Abbas -- 10. Generalized Swanson model and its pseudo supersymmetric partners / A. Sinha and P. Roy -- 11. The relevance of berry phase in quantum physics / P. Bandyopadhyay -- 12. Quantum Hamiltonian diagonalization / P. Gosselin, A. Bérard and H. Mohrbach -- 13. The Hall conductivity of spinning anyons / B. Basu -- 14. Quantum annealing and computation / A. Das and B.K. Chakrabarti -- 15. Liouville gravity from Einstein gravity / D. Grumiller and R. Jackiw -- 16. Exact static solutions of a generalized discret ø[symbol] / A. Khare -- 17. A model for flow reversal in two-dimensional convection / K. Kumar [und weitere] -- 18. Euclidean networks and dimensionality / P. Sen -- 19. Equal superposition transformations and quantum random walks / P. Parashar -- 20. Cloning entanglement locally / S.K. Choudhary and R. Rahaman
Few-body Methods: Principles And Applications - Proceedings Of The International Symposium
Author: Teck-kah Lim
Publisher: World Scientific
ISBN: 9813201827
Category :
Languages : en
Pages : 917
Book Description
This book provides an elementary introduction to classical analysis on normed spaces, with special attention paid to fixed points, calculus, and ordinary differential equations. It contains a full treatment of vector measures on delta rings without assuming any scalar measure theory and hence should fit well into existing courses. The relation between group representations and almost periodic functions is presented. The mean values offer an infinitedimensional analogue of measure theory on finitedimensional Euclidean spaces. This book is ideal for beginners who want to get through the basic material as soon as possible and then do their own research immediately.
Publisher: World Scientific
ISBN: 9813201827
Category :
Languages : en
Pages : 917
Book Description
This book provides an elementary introduction to classical analysis on normed spaces, with special attention paid to fixed points, calculus, and ordinary differential equations. It contains a full treatment of vector measures on delta rings without assuming any scalar measure theory and hence should fit well into existing courses. The relation between group representations and almost periodic functions is presented. The mean values offer an infinitedimensional analogue of measure theory on finitedimensional Euclidean spaces. This book is ideal for beginners who want to get through the basic material as soon as possible and then do their own research immediately.
Many-Body Schrödinger Equation
Author: Hiroshi Isozaki
Publisher: Springer Nature
ISBN: 9819937043
Category : Science
Languages : en
Pages : 411
Book Description
Spectral properties for Schrödinger operators are a major concern in quantum mechanics both in physics and in mathematics. For the few-particle systems, we now have sufficient knowledge for two-body systems, although much less is known about N-body systems. The asymptotic completeness of time-dependent wave operators was proved in the 1980s and was a landmark in the study of the N-body problem. However, many problems are left open for the stationary N-particle equation. Due to the recent rapid development of computer power, it is now possible to compute the three-body scattering problem numerically, in which the stationary formulation of scattering is used. This means that the stationary theory for N-body Schrödinger operators remains an important problem of quantum mechanics. It is stressed here that for the three-body problem, we have a satisfactory stationary theory. This book is devoted to the mathematical aspects of the N-body problem from both the time-dependent and stationary viewpoints. The main themes are:(1) The Mourre theory for the resolvent of self-adjoint operators(2) Two-body Schrödinger operators—Time-dependent approach and stationary approach(3) Time-dependent approach to N-body Schrödinger operators(4) Eigenfunction expansion theory for three-body Schrödinger operatorsCompared with existing books for the many-body problem, the salient feature of this book consists in the stationary scattering theory (4). The eigenfunction expansion theorem is the physical basis of Schrödinger operators. Recently, it proved to be the basis of inverse problems of quantum scattering. This book provides necessary background information to understand the physical and mathematical basis of Schrödinger operators and standard knowledge for future development.
Publisher: Springer Nature
ISBN: 9819937043
Category : Science
Languages : en
Pages : 411
Book Description
Spectral properties for Schrödinger operators are a major concern in quantum mechanics both in physics and in mathematics. For the few-particle systems, we now have sufficient knowledge for two-body systems, although much less is known about N-body systems. The asymptotic completeness of time-dependent wave operators was proved in the 1980s and was a landmark in the study of the N-body problem. However, many problems are left open for the stationary N-particle equation. Due to the recent rapid development of computer power, it is now possible to compute the three-body scattering problem numerically, in which the stationary formulation of scattering is used. This means that the stationary theory for N-body Schrödinger operators remains an important problem of quantum mechanics. It is stressed here that for the three-body problem, we have a satisfactory stationary theory. This book is devoted to the mathematical aspects of the N-body problem from both the time-dependent and stationary viewpoints. The main themes are:(1) The Mourre theory for the resolvent of self-adjoint operators(2) Two-body Schrödinger operators—Time-dependent approach and stationary approach(3) Time-dependent approach to N-body Schrödinger operators(4) Eigenfunction expansion theory for three-body Schrödinger operatorsCompared with existing books for the many-body problem, the salient feature of this book consists in the stationary scattering theory (4). The eigenfunction expansion theorem is the physical basis of Schrödinger operators. Recently, it proved to be the basis of inverse problems of quantum scattering. This book provides necessary background information to understand the physical and mathematical basis of Schrödinger operators and standard knowledge for future development.
Recent Progress in Many-body Theories
Author: Raymond F. Bishop
Publisher: World Scientific
ISBN: 9789810243180
Category : Science
Languages : en
Pages : 520
Book Description
Quantum many-body theory as a discipline in its own right dates largely from the 1950's. It has developed since then to its current position as one of the cornerstones of modern theoretical physics. The field remains vibrant and active, vigorous and exciting. Indeed, its successes and importance were vividly illustrated prior to the conference by the sharing of the 1998 Nobel Prizes in both Physics and Chemistry by three many-body theorists. Two of those Nobel laureates, Walter Kohn and Bob Laughlin, delivered invited lectures at this meeting, the tenth in the series of International Conferences on Recent Progress in Many-Body Theories. This series is universally recognized as being the premier series of meetings on this subject, and its proceedings have always summarized the current state of the art through the lectures of its leading practitioners. The present volume is no exception. A major aim of this conference series has been to foster the exchange of ideas between physicists working in all the diverse fields of application of quantum many-body theory. These include nuclear and subnuclear physics, quantum fluids, strongly correlated electronic systems, and low-dimensional condensed-matter systems and materials. All of these fields and others are represented in the present volume. Other topical themes covered include density functional theory and its applications to nuclear and electronic systems, quantum dots and chaos, and trapped Bose-Einstein condensates. Through this breadth of applications the reader will get a clear illustration of the power of the tools of modern microscopic quantum many-body theory, and their usefulness both in achieving a commonality of approach andunderstanding, and in transferring powerful ideas from one field to another.
Publisher: World Scientific
ISBN: 9789810243180
Category : Science
Languages : en
Pages : 520
Book Description
Quantum many-body theory as a discipline in its own right dates largely from the 1950's. It has developed since then to its current position as one of the cornerstones of modern theoretical physics. The field remains vibrant and active, vigorous and exciting. Indeed, its successes and importance were vividly illustrated prior to the conference by the sharing of the 1998 Nobel Prizes in both Physics and Chemistry by three many-body theorists. Two of those Nobel laureates, Walter Kohn and Bob Laughlin, delivered invited lectures at this meeting, the tenth in the series of International Conferences on Recent Progress in Many-Body Theories. This series is universally recognized as being the premier series of meetings on this subject, and its proceedings have always summarized the current state of the art through the lectures of its leading practitioners. The present volume is no exception. A major aim of this conference series has been to foster the exchange of ideas between physicists working in all the diverse fields of application of quantum many-body theory. These include nuclear and subnuclear physics, quantum fluids, strongly correlated electronic systems, and low-dimensional condensed-matter systems and materials. All of these fields and others are represented in the present volume. Other topical themes covered include density functional theory and its applications to nuclear and electronic systems, quantum dots and chaos, and trapped Bose-Einstein condensates. Through this breadth of applications the reader will get a clear illustration of the power of the tools of modern microscopic quantum many-body theory, and their usefulness both in achieving a commonality of approach andunderstanding, and in transferring powerful ideas from one field to another.
Coulomb Interactions in Nuclear and Atomic Few-Body Collisions
Author: Frank S. Levin
Publisher: Springer Science & Business Media
ISBN: 1475798806
Category : Science
Languages : en
Pages : 360
Book Description
This series, Finite Systems and Multipartide Dynamics, is intended to provide timely reviews of current research topics, written in a style sufficient ly pedagogic so as to allow a nonexpert to grasp the underlying ideas as well as understand technical details. The series is an outgrowth of our involvement with three interdisciplin ary activities, namely, those arising from the American Physical Society's Topical Group on Few-Body Systems and Multipartide Dynamics, the series of Gordon Research Conferences first known by the title "Few-Body Problems in Chemistry and Physics" and later renamed "Dynamics of Simple Systems in Chemistry and Physics," and the series of Sanibel Symposia, sponsored in part by the University of Florida. The vitality of these activities and the enthusiastic response to them by researchers in various subfields of physics and chemistry have convinced us that there is a place-even a need-for a series of timely reviews on topics of interest not only to a narrow band of experts but also to a broader, interdisciplinary readership. lt is our hope that the emphasis on pedagogy will permit at least some of the books in the series to be useful in graduate-level courses. Rather than use the adjective "Few-Body" or "Simple" to modify the word "Systems" in the title, we have chosen "Finite. " It better expresses the wide range of systems with which the reviews of the series may deal.
Publisher: Springer Science & Business Media
ISBN: 1475798806
Category : Science
Languages : en
Pages : 360
Book Description
This series, Finite Systems and Multipartide Dynamics, is intended to provide timely reviews of current research topics, written in a style sufficient ly pedagogic so as to allow a nonexpert to grasp the underlying ideas as well as understand technical details. The series is an outgrowth of our involvement with three interdisciplin ary activities, namely, those arising from the American Physical Society's Topical Group on Few-Body Systems and Multipartide Dynamics, the series of Gordon Research Conferences first known by the title "Few-Body Problems in Chemistry and Physics" and later renamed "Dynamics of Simple Systems in Chemistry and Physics," and the series of Sanibel Symposia, sponsored in part by the University of Florida. The vitality of these activities and the enthusiastic response to them by researchers in various subfields of physics and chemistry have convinced us that there is a place-even a need-for a series of timely reviews on topics of interest not only to a narrow band of experts but also to a broader, interdisciplinary readership. lt is our hope that the emphasis on pedagogy will permit at least some of the books in the series to be useful in graduate-level courses. Rather than use the adjective "Few-Body" or "Simple" to modify the word "Systems" in the title, we have chosen "Finite. " It better expresses the wide range of systems with which the reviews of the series may deal.
Recent Progress in Many-body Theories
Author: Joseph A. Carlson
Publisher: World Scientific
ISBN: 9812772898
Category : Science
Languages : en
Pages : 285
Book Description
Quantum many-body theory has greatly expanded its scope and depth over the past few years, treating more deeply long-standing issues like phase transitions and strongly-correlated systems, and simultaneously expanding into new areas such as cold atom physics and quantum information. This collection of contributions highlights recent advances in all these areas by leaders in their respective fields. Also included are some historic perspectives by L P Gor'kov and S T Belyaev, Feenberg Medal Recipients at this conference, and Nobel Laureate P W Anderson gives his unique outlook on the future of physics. The volume covers the key topics in many-body theory, tied together through advances in theoretical tools and computational techniques, and a unifying theme of fundamental approaches to quantum many-body physics. Contents: Feenberg Medal Session: Surface and Superconductivity (L P Gor'kov); The Future Lies Ahead (P W Anderson); Strongly Correlated Systems and Phase Transitions: Quantum Matters: Physics Beyond Landau's Paradigms (T Senthil); Recent Applications of the DMRG Method (K Hallberg); Quantum Fluids and Solids: Monolayer Charged Quantum Films: A Quantum Simulation Study (K Wierschem & E Manousakis); Analysis of the Interatomic Potential of the Helium Systems (S Ujevic & S A Vitiello); Nuclear Physics and QCD: Quantum Phase Transitions in Mesoscopic Systems (F Iachello); New Approaches to Strong Coupling Lattice QCD (S Chandrasekharan); Cold Atoms and Quantum Information: Superfluid Regimes in Degenerate Atomic Fermi Gases (G V Shlyapnikov); Bosons in Optical Lattices (S L Rolston); Complex Systems: Spin Textures and Random Fields in Dirty Quantum Hall Ferromagnets (J T Chalker); Dissipative Quantum Disordered Models (L F Cugliandolo); and other papers. Readership: Theoretical physicists in condensed matter, nuclear physics and QCD, atomic physics and quantum information.
Publisher: World Scientific
ISBN: 9812772898
Category : Science
Languages : en
Pages : 285
Book Description
Quantum many-body theory has greatly expanded its scope and depth over the past few years, treating more deeply long-standing issues like phase transitions and strongly-correlated systems, and simultaneously expanding into new areas such as cold atom physics and quantum information. This collection of contributions highlights recent advances in all these areas by leaders in their respective fields. Also included are some historic perspectives by L P Gor'kov and S T Belyaev, Feenberg Medal Recipients at this conference, and Nobel Laureate P W Anderson gives his unique outlook on the future of physics. The volume covers the key topics in many-body theory, tied together through advances in theoretical tools and computational techniques, and a unifying theme of fundamental approaches to quantum many-body physics. Contents: Feenberg Medal Session: Surface and Superconductivity (L P Gor'kov); The Future Lies Ahead (P W Anderson); Strongly Correlated Systems and Phase Transitions: Quantum Matters: Physics Beyond Landau's Paradigms (T Senthil); Recent Applications of the DMRG Method (K Hallberg); Quantum Fluids and Solids: Monolayer Charged Quantum Films: A Quantum Simulation Study (K Wierschem & E Manousakis); Analysis of the Interatomic Potential of the Helium Systems (S Ujevic & S A Vitiello); Nuclear Physics and QCD: Quantum Phase Transitions in Mesoscopic Systems (F Iachello); New Approaches to Strong Coupling Lattice QCD (S Chandrasekharan); Cold Atoms and Quantum Information: Superfluid Regimes in Degenerate Atomic Fermi Gases (G V Shlyapnikov); Bosons in Optical Lattices (S L Rolston); Complex Systems: Spin Textures and Random Fields in Dirty Quantum Hall Ferromagnets (J T Chalker); Dissipative Quantum Disordered Models (L F Cugliandolo); and other papers. Readership: Theoretical physicists in condensed matter, nuclear physics and QCD, atomic physics and quantum information.
Recent Progress In Many-body Theories - Proceedings Of The 9th International Conference
Author: David Neilson
Publisher: World Scientific
ISBN: 9814545236
Category :
Languages : en
Pages : 550
Book Description
This inaugural volume in a new series on quantum many-body theory contains the papers presented at the Ninth International Conference on Recent Progress in Many-Body Theories. The conference focused on the development and refinement of many-body methods. A major aim was to foster the exchange of ideas among physicists working in such diverse areas as nuclear physics, quantum chemistry, complex systems, lattice Hamiltonians, quantum fluids and condensed matter physics. A special feature was a session devoted to theories for many-electron systems in low-dimensional quantum dots, wires and electrons.
Publisher: World Scientific
ISBN: 9814545236
Category :
Languages : en
Pages : 550
Book Description
This inaugural volume in a new series on quantum many-body theory contains the papers presented at the Ninth International Conference on Recent Progress in Many-Body Theories. The conference focused on the development and refinement of many-body methods. A major aim was to foster the exchange of ideas among physicists working in such diverse areas as nuclear physics, quantum chemistry, complex systems, lattice Hamiltonians, quantum fluids and condensed matter physics. A special feature was a session devoted to theories for many-electron systems in low-dimensional quantum dots, wires and electrons.