Author: Jun Ma
Publisher: Springer Science & Business Media
ISBN: 1461480604
Category : Business & Economics
Languages : en
Pages : 308
Book Description
Nonlinear models have been used extensively in the areas of economics and finance. Recent literature on the topic has shown that a large number of series exhibit nonlinear dynamics as opposed to the alternative--linear dynamics. Incorporating these concepts involves deriving and estimating nonlinear time series models, and these have typically taken the form of Threshold Autoregression (TAR) models, Exponential Smooth Transition (ESTAR) models, and Markov Switching (MS) models, among several others. This edited volume provides a timely overview of nonlinear estimation techniques, offering new methods and insights into nonlinear time series analysis. It features cutting-edge research from leading academics in economics, finance, and business management, and will focus on such topics as Zero-Information-Limit-Conditions, using Markov Switching Models to analyze economics series, and how best to distinguish between competing nonlinear models. Principles and techniques in this book will appeal to econometricians, finance professors teaching quantitative finance, researchers, and graduate students interested in learning how to apply advances in nonlinear time series modeling to solve complex problems in economics and finance.
Recent Advances in Estimating Nonlinear Models
Author: Jun Ma
Publisher: Springer Science & Business Media
ISBN: 1461480604
Category : Business & Economics
Languages : en
Pages : 308
Book Description
Nonlinear models have been used extensively in the areas of economics and finance. Recent literature on the topic has shown that a large number of series exhibit nonlinear dynamics as opposed to the alternative--linear dynamics. Incorporating these concepts involves deriving and estimating nonlinear time series models, and these have typically taken the form of Threshold Autoregression (TAR) models, Exponential Smooth Transition (ESTAR) models, and Markov Switching (MS) models, among several others. This edited volume provides a timely overview of nonlinear estimation techniques, offering new methods and insights into nonlinear time series analysis. It features cutting-edge research from leading academics in economics, finance, and business management, and will focus on such topics as Zero-Information-Limit-Conditions, using Markov Switching Models to analyze economics series, and how best to distinguish between competing nonlinear models. Principles and techniques in this book will appeal to econometricians, finance professors teaching quantitative finance, researchers, and graduate students interested in learning how to apply advances in nonlinear time series modeling to solve complex problems in economics and finance.
Publisher: Springer Science & Business Media
ISBN: 1461480604
Category : Business & Economics
Languages : en
Pages : 308
Book Description
Nonlinear models have been used extensively in the areas of economics and finance. Recent literature on the topic has shown that a large number of series exhibit nonlinear dynamics as opposed to the alternative--linear dynamics. Incorporating these concepts involves deriving and estimating nonlinear time series models, and these have typically taken the form of Threshold Autoregression (TAR) models, Exponential Smooth Transition (ESTAR) models, and Markov Switching (MS) models, among several others. This edited volume provides a timely overview of nonlinear estimation techniques, offering new methods and insights into nonlinear time series analysis. It features cutting-edge research from leading academics in economics, finance, and business management, and will focus on such topics as Zero-Information-Limit-Conditions, using Markov Switching Models to analyze economics series, and how best to distinguish between competing nonlinear models. Principles and techniques in this book will appeal to econometricians, finance professors teaching quantitative finance, researchers, and graduate students interested in learning how to apply advances in nonlinear time series modeling to solve complex problems in economics and finance.
Nonlinear Models for Repeated Measurement Data
Author: Marie Davidian
Publisher: Routledge
ISBN: 1351428152
Category : Mathematics
Languages : en
Pages : 360
Book Description
Nonlinear measurement data arise in a wide variety of biological and biomedical applications, such as longitudinal clinical trials, studies of drug kinetics and growth, and the analysis of assay and laboratory data. Nonlinear Models for Repeated Measurement Data provides the first unified development of methods and models for data of this type, with a detailed treatment of inference for the nonlinear mixed effects and its extensions. A particular strength of the book is the inclusion of several detailed case studies from the areas of population pharmacokinetics and pharmacodynamics, immunoassay and bioassay development and the analysis of growth curves.
Publisher: Routledge
ISBN: 1351428152
Category : Mathematics
Languages : en
Pages : 360
Book Description
Nonlinear measurement data arise in a wide variety of biological and biomedical applications, such as longitudinal clinical trials, studies of drug kinetics and growth, and the analysis of assay and laboratory data. Nonlinear Models for Repeated Measurement Data provides the first unified development of methods and models for data of this type, with a detailed treatment of inference for the nonlinear mixed effects and its extensions. A particular strength of the book is the inclusion of several detailed case studies from the areas of population pharmacokinetics and pharmacodynamics, immunoassay and bioassay development and the analysis of growth curves.
Adaptive Learning Methods for Nonlinear System Modeling
Author: Danilo Comminiello
Publisher: Butterworth-Heinemann
ISBN: 0128129778
Category : Technology & Engineering
Languages : en
Pages : 390
Book Description
Adaptive Learning Methods for Nonlinear System Modeling presents some of the recent advances on adaptive algorithms and machine learning methods designed for nonlinear system modeling and identification. Real-life problems always entail a certain degree of nonlinearity, which makes linear models a non-optimal choice. This book mainly focuses on those methodologies for nonlinear modeling that involve any adaptive learning approaches to process data coming from an unknown nonlinear system. By learning from available data, such methods aim at estimating the nonlinearity introduced by the unknown system. In particular, the methods presented in this book are based on online learning approaches, which process the data example-by-example and allow to model even complex nonlinearities, e.g., showing time-varying and dynamic behaviors. Possible fields of applications of such algorithms includes distributed sensor networks, wireless communications, channel identification, predictive maintenance, wind prediction, network security, vehicular networks, active noise control, information forensics and security, tracking control in mobile robots, power systems, and nonlinear modeling in big data, among many others. This book serves as a crucial resource for researchers, PhD and post-graduate students working in the areas of machine learning, signal processing, adaptive filtering, nonlinear control, system identification, cooperative systems, computational intelligence. This book may be also of interest to the industry market and practitioners working with a wide variety of nonlinear systems. - Presents the key trends and future perspectives in the field of nonlinear signal processing and adaptive learning. - Introduces novel solutions and improvements over the state-of-the-art methods in the very exciting area of online and adaptive nonlinear identification. - Helps readers understand important methods that are effective in nonlinear system modelling, suggesting the right methodology to address particular issues.
Publisher: Butterworth-Heinemann
ISBN: 0128129778
Category : Technology & Engineering
Languages : en
Pages : 390
Book Description
Adaptive Learning Methods for Nonlinear System Modeling presents some of the recent advances on adaptive algorithms and machine learning methods designed for nonlinear system modeling and identification. Real-life problems always entail a certain degree of nonlinearity, which makes linear models a non-optimal choice. This book mainly focuses on those methodologies for nonlinear modeling that involve any adaptive learning approaches to process data coming from an unknown nonlinear system. By learning from available data, such methods aim at estimating the nonlinearity introduced by the unknown system. In particular, the methods presented in this book are based on online learning approaches, which process the data example-by-example and allow to model even complex nonlinearities, e.g., showing time-varying and dynamic behaviors. Possible fields of applications of such algorithms includes distributed sensor networks, wireless communications, channel identification, predictive maintenance, wind prediction, network security, vehicular networks, active noise control, information forensics and security, tracking control in mobile robots, power systems, and nonlinear modeling in big data, among many others. This book serves as a crucial resource for researchers, PhD and post-graduate students working in the areas of machine learning, signal processing, adaptive filtering, nonlinear control, system identification, cooperative systems, computational intelligence. This book may be also of interest to the industry market and practitioners working with a wide variety of nonlinear systems. - Presents the key trends and future perspectives in the field of nonlinear signal processing and adaptive learning. - Introduces novel solutions and improvements over the state-of-the-art methods in the very exciting area of online and adaptive nonlinear identification. - Helps readers understand important methods that are effective in nonlinear system modelling, suggesting the right methodology to address particular issues.
Nonlinear Regression
Author: George A. F. Seber
Publisher: John Wiley & Sons
ISBN: 0471725307
Category : Mathematics
Languages : en
Pages : 800
Book Description
WILEY-INTERSCIENCE PAPERBACK SERIES The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. From the Reviews of Nonlinear Regression "A very good book and an important one in that it is likely to become a standard reference for all interested in nonlinear regression; and I would imagine that any statistician concerned with nonlinear regression would want a copy on his shelves." –The Statistician "Nonlinear Regression also includes a reference list of over 700 entries. The compilation of this material and cross-referencing of it is one of the most valuable aspects of the book. Nonlinear Regression can provide the researcher unfamiliar with a particular specialty area of nonlinear regression an introduction to that area of nonlinear regression and access to the appropriate references . . . Nonlinear Regression provides by far the broadest discussion of nonlinear regression models currently available and will be a valuable addition to the library of anyone interested in understanding and using such models including the statistical researcher." –Mathematical Reviews
Publisher: John Wiley & Sons
ISBN: 0471725307
Category : Mathematics
Languages : en
Pages : 800
Book Description
WILEY-INTERSCIENCE PAPERBACK SERIES The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. From the Reviews of Nonlinear Regression "A very good book and an important one in that it is likely to become a standard reference for all interested in nonlinear regression; and I would imagine that any statistician concerned with nonlinear regression would want a copy on his shelves." –The Statistician "Nonlinear Regression also includes a reference list of over 700 entries. The compilation of this material and cross-referencing of it is one of the most valuable aspects of the book. Nonlinear Regression can provide the researcher unfamiliar with a particular specialty area of nonlinear regression an introduction to that area of nonlinear regression and access to the appropriate references . . . Nonlinear Regression provides by far the broadest discussion of nonlinear regression models currently available and will be a valuable addition to the library of anyone interested in understanding and using such models including the statistical researcher." –Mathematical Reviews
Nonlinear Regression Analysis and Its Applications
Author: Douglas M. Bates
Publisher: Wiley-Interscience
ISBN:
Category : Mathematics
Languages : en
Pages : 398
Book Description
Provides a presentation of the theoretical, practical, and computational aspects of nonlinear regression. There is background material on linear regression, including a geometrical development for linear and nonlinear least squares.
Publisher: Wiley-Interscience
ISBN:
Category : Mathematics
Languages : en
Pages : 398
Book Description
Provides a presentation of the theoretical, practical, and computational aspects of nonlinear regression. There is background material on linear regression, including a geometrical development for linear and nonlinear least squares.
Recent Advances in Total Least Squares Techniques and Errors-in-variables Modeling
Author: Sabine van Huffel
Publisher: SIAM
ISBN: 9780898713930
Category : Mathematics
Languages : en
Pages : 404
Book Description
An overview of the computational issues; statistical, numerical, and algebraic properties, and new generalizations and applications of advances on TLS and EIV models. Experts from several disciplines prepared overview papers which were presented at the conference and are included in this book.
Publisher: SIAM
ISBN: 9780898713930
Category : Mathematics
Languages : en
Pages : 404
Book Description
An overview of the computational issues; statistical, numerical, and algebraic properties, and new generalizations and applications of advances on TLS and EIV models. Experts from several disciplines prepared overview papers which were presented at the conference and are included in this book.
Advanced Methodologies and Technologies in Business Operations and Management
Author: Khosrow-Pour, D.B.A., Mehdi
Publisher: IGI Global
ISBN: 1522573631
Category : Business & Economics
Languages : en
Pages : 1482
Book Description
Businesses consistently work on new projects, products, and workflows to remain competitive and successful in the modern business environment. To remain zealous, businesses must employ the most effective methods and tools in human resources, project management, and overall business plan execution as competitors work to succeed as well. Advanced Methodologies and Technologies in Business Operations and Management provides emerging research on business tools such as employee engagement, payout policies, and financial investing to promote operational success. While highlighting the challenges facing modern organizations, readers will learn how corporate social responsibility and utilizing artificial intelligence improve a company’s culture and management. This book is an ideal resource for executives and managers, researchers, accountants, and financial investors seeking current research on business operations and management.
Publisher: IGI Global
ISBN: 1522573631
Category : Business & Economics
Languages : en
Pages : 1482
Book Description
Businesses consistently work on new projects, products, and workflows to remain competitive and successful in the modern business environment. To remain zealous, businesses must employ the most effective methods and tools in human resources, project management, and overall business plan execution as competitors work to succeed as well. Advanced Methodologies and Technologies in Business Operations and Management provides emerging research on business tools such as employee engagement, payout policies, and financial investing to promote operational success. While highlighting the challenges facing modern organizations, readers will learn how corporate social responsibility and utilizing artificial intelligence improve a company’s culture and management. This book is an ideal resource for executives and managers, researchers, accountants, and financial investors seeking current research on business operations and management.
Elements of Nonlinear Time Series Analysis and Forecasting
Author: Jan G. De Gooijer
Publisher: Springer
ISBN: 3319432524
Category : Mathematics
Languages : en
Pages : 626
Book Description
This book provides an overview of the current state-of-the-art of nonlinear time series analysis, richly illustrated with examples, pseudocode algorithms and real-world applications. Avoiding a “theorem-proof” format, it shows concrete applications on a variety of empirical time series. The book can be used in graduate courses in nonlinear time series and at the same time also includes interesting material for more advanced readers. Though it is largely self-contained, readers require an understanding of basic linear time series concepts, Markov chains and Monte Carlo simulation methods. The book covers time-domain and frequency-domain methods for the analysis of both univariate and multivariate (vector) time series. It makes a clear distinction between parametric models on the one hand, and semi- and nonparametric models/methods on the other. This offers the reader the option of concentrating exclusively on one of these nonlinear time series analysis methods. To make the book as user friendly as possible, major supporting concepts and specialized tables are appended at the end of every chapter. In addition, each chapter concludes with a set of key terms and concepts, as well as a summary of the main findings. Lastly, the book offers numerous theoretical and empirical exercises, with answers provided by the author in an extensive solutions manual.
Publisher: Springer
ISBN: 3319432524
Category : Mathematics
Languages : en
Pages : 626
Book Description
This book provides an overview of the current state-of-the-art of nonlinear time series analysis, richly illustrated with examples, pseudocode algorithms and real-world applications. Avoiding a “theorem-proof” format, it shows concrete applications on a variety of empirical time series. The book can be used in graduate courses in nonlinear time series and at the same time also includes interesting material for more advanced readers. Though it is largely self-contained, readers require an understanding of basic linear time series concepts, Markov chains and Monte Carlo simulation methods. The book covers time-domain and frequency-domain methods for the analysis of both univariate and multivariate (vector) time series. It makes a clear distinction between parametric models on the one hand, and semi- and nonparametric models/methods on the other. This offers the reader the option of concentrating exclusively on one of these nonlinear time series analysis methods. To make the book as user friendly as possible, major supporting concepts and specialized tables are appended at the end of every chapter. In addition, each chapter concludes with a set of key terms and concepts, as well as a summary of the main findings. Lastly, the book offers numerous theoretical and empirical exercises, with answers provided by the author in an extensive solutions manual.
Modelling Nonlinear Economic Time Series
Author: Timo Teräsvirta
Publisher: OUP Oxford
ISBN: 9780199587148
Category : Business & Economics
Languages : en
Pages : 592
Book Description
This book contains an extensive up-to-date overview of nonlinear time series models and their application to modelling economic relationships. It considers nonlinear models in stationary and nonstationary frameworks, and both parametric and nonparametric models are discussed. The book contains examples of nonlinear models in economic theory and presents the most common nonlinear time series models. Importantly, it shows the reader how to apply these models in practice. For thispurpose, the building of various nonlinear models with its three stages of model building: specification, estimation and evaluation, is discussed in detail and is illustrated by several examples involving both economic and non-economic data. Since estimation of nonlinear time series models is carried outusing numerical algorithms, the book contains a chapter on estimating parametric nonlinear models and another on estimating nonparametric ones.Forecasting is a major reason for building time series models, linear or nonlinear. The book contains a discussion on forecasting with nonlinear models, both parametric and nonparametric, and considers numerical techniques necessary for computing multi-period forecasts from them. The main focus of the book is on models of the conditional mean, but models of the conditional variance, mainly those of autoregressive conditional heteroskedasticity, receive attention as well. A separate chapter isdevoted to state space models. As a whole, the book is an indispensable tool for researchers interested in nonlinear time series and is also suitable for teaching courses in econometrics and time series analysis.
Publisher: OUP Oxford
ISBN: 9780199587148
Category : Business & Economics
Languages : en
Pages : 592
Book Description
This book contains an extensive up-to-date overview of nonlinear time series models and their application to modelling economic relationships. It considers nonlinear models in stationary and nonstationary frameworks, and both parametric and nonparametric models are discussed. The book contains examples of nonlinear models in economic theory and presents the most common nonlinear time series models. Importantly, it shows the reader how to apply these models in practice. For thispurpose, the building of various nonlinear models with its three stages of model building: specification, estimation and evaluation, is discussed in detail and is illustrated by several examples involving both economic and non-economic data. Since estimation of nonlinear time series models is carried outusing numerical algorithms, the book contains a chapter on estimating parametric nonlinear models and another on estimating nonparametric ones.Forecasting is a major reason for building time series models, linear or nonlinear. The book contains a discussion on forecasting with nonlinear models, both parametric and nonparametric, and considers numerical techniques necessary for computing multi-period forecasts from them. The main focus of the book is on models of the conditional mean, but models of the conditional variance, mainly those of autoregressive conditional heteroskedasticity, receive attention as well. A separate chapter isdevoted to state space models. As a whole, the book is an indispensable tool for researchers interested in nonlinear time series and is also suitable for teaching courses in econometrics and time series analysis.
Recent Advances In Statistical Methods, Proceedings Of Statistics 2001 Canada: The 4th Conference In Applied Statistics
Author: Yogendra P Chaubey
Publisher: World Scientific
ISBN: 1783261145
Category : Mathematics
Languages : en
Pages : 378
Book Description
This volume consists of research papers dealing with computational and methodological issues of statistical methods on the cutting edge of modern science. It touches on many applied fields such as Bayesian Methods, Biostatistics, Econometrics, Finite Population Sampling, Genomics, Linear and Nonlinear Models, Networks and Queues, Survival Analysis, Time Series, and many more.
Publisher: World Scientific
ISBN: 1783261145
Category : Mathematics
Languages : en
Pages : 378
Book Description
This volume consists of research papers dealing with computational and methodological issues of statistical methods on the cutting edge of modern science. It touches on many applied fields such as Bayesian Methods, Biostatistics, Econometrics, Finite Population Sampling, Genomics, Linear and Nonlinear Models, Networks and Queues, Survival Analysis, Time Series, and many more.