Proceedings of ELM 2018 PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Proceedings of ELM 2018 PDF full book. Access full book title Proceedings of ELM 2018 by Jiuwen Cao. Download full books in PDF and EPUB format.

Proceedings of ELM 2018

Proceedings of ELM 2018 PDF Author: Jiuwen Cao
Publisher: Springer
ISBN: 3030233073
Category : Technology & Engineering
Languages : en
Pages : 356

Book Description
This book contains some selected papers from the International Conference on Extreme Learning Machine 2018, which was held in Singapore, November 21–23, 2018. This conference provided a forum for academics, researchers and engineers to share and exchange R&D experience on both theoretical studies and practical applications of the ELM technique and brain learning. Extreme Learning Machines (ELM) aims to enable pervasive learning and pervasive intelligence. As advocated by ELM theories, it is exciting to see the convergence of machine learning and biological learning from the long-term point of view. ELM may be one of the fundamental “learning particles” filling the gaps between machine learning and biological learning (of which activation functions are even unknown). ELM represents a suite of (machine and biological) learning techniques in which hidden neurons need not be tuned: inherited from their ancestors or randomly generated. ELM learning theories show that effective learning algorithms can be derived based on randomly generated hidden neurons (biological neurons, artificial neurons, wavelets, Fourier series, etc.) as long as they are nonlinear piecewise continuous, independent of training data and application environments. Increasingly, evidence from neuroscience suggests that similar principles apply in biological learning systems. ELM theories and algorithms argue that “random hidden neurons” capture an essential aspect of biological learning mechanisms as well as the intuitive sense that the efficiency of biological learning need not rely on computing power of neurons. ELM theories thus hint at possible reasons why the brain is more intelligent and effective than current computers. The main theme of ELM2018 is Hierarchical ELM, AI for IoT, Synergy of Machine Learning and Biological Learning. This book covers theories, algorithms and applications of ELM. It gives readers a glance at the most recent advances of ELM.

Proceedings of ELM 2018

Proceedings of ELM 2018 PDF Author: Jiuwen Cao
Publisher: Springer
ISBN: 3030233073
Category : Technology & Engineering
Languages : en
Pages : 356

Book Description
This book contains some selected papers from the International Conference on Extreme Learning Machine 2018, which was held in Singapore, November 21–23, 2018. This conference provided a forum for academics, researchers and engineers to share and exchange R&D experience on both theoretical studies and practical applications of the ELM technique and brain learning. Extreme Learning Machines (ELM) aims to enable pervasive learning and pervasive intelligence. As advocated by ELM theories, it is exciting to see the convergence of machine learning and biological learning from the long-term point of view. ELM may be one of the fundamental “learning particles” filling the gaps between machine learning and biological learning (of which activation functions are even unknown). ELM represents a suite of (machine and biological) learning techniques in which hidden neurons need not be tuned: inherited from their ancestors or randomly generated. ELM learning theories show that effective learning algorithms can be derived based on randomly generated hidden neurons (biological neurons, artificial neurons, wavelets, Fourier series, etc.) as long as they are nonlinear piecewise continuous, independent of training data and application environments. Increasingly, evidence from neuroscience suggests that similar principles apply in biological learning systems. ELM theories and algorithms argue that “random hidden neurons” capture an essential aspect of biological learning mechanisms as well as the intuitive sense that the efficiency of biological learning need not rely on computing power of neurons. ELM theories thus hint at possible reasons why the brain is more intelligent and effective than current computers. The main theme of ELM2018 is Hierarchical ELM, AI for IoT, Synergy of Machine Learning and Biological Learning. This book covers theories, algorithms and applications of ELM. It gives readers a glance at the most recent advances of ELM.

Handbook of Power Electronics in Autonomous and Electric Vehicles

Handbook of Power Electronics in Autonomous and Electric Vehicles PDF Author: Muhammad H. Rashid
Publisher: Elsevier
ISBN: 0323950981
Category : Technology & Engineering
Languages : en
Pages : 370

Book Description
Handbook of Power Electronics in Autonomous and Electric Vehicles provides advanced knowledge on autonomous systems, electric propulsion in electric vehicles, radars and sensors for autonomous systems, and relevant aspects of energy storage and battery charging. The work is designed to provide clear technical presentation with a focus on commercial viability. It supports any and all aspects of a project requiring specialist design, analysis, installation, commissioning and maintenance services. With this book in hand, engineers will be able to execute design, analysis and evaluation of assigned projects using sound engineering principles and commercial requirements, policies, and product and program requirements. - Presents core power systems and engineering applications relevant to autonomous and electric vehicles in characteristic depth and technical presentation - Offers practical support and guidance with detailed examples and applications for laboratory vehicular test plans and automotive field experimentation - Includes modern technical coverage of emergent fields, including sensors and radars, battery charging and monitoring, and vehicle cybersecurity

Vehicle Power Management

Vehicle Power Management PDF Author: Xi Zhang
Publisher: Springer Science & Business Media
ISBN: 0857297368
Category : Technology & Engineering
Languages : en
Pages : 353

Book Description
Vehicle Power Management addresses the challenge of improving vehicle fuel economy and reducing emissions without sacrificing vehicle performance, reliability and durability. It opens with the definition, objectives, and current research issues of vehicle power management, before moving on to a detailed introduction to the modeling of vehicle devices and components involved in the vehicle power management system, which has been proven to be the most cost-effective and efficient method for initial-phase vehicle research and design. Specific vehicle power management algorithms and strategies, including the analytical approach, optimal control, intelligent system approaches and wavelet technology, are derived and analyzed for realistic applications. Vehicle Power Management also gives a detailed description of several key technologies in the design phases of hybrid electric vehicles containing battery management systems, component optimization, hardware-in-the-loop and software-in-the-loop. Vehicle Power Management provides graduate and upper level undergraduate students, engineers, and researchers in both academia and the automotive industry, with a clear understanding of the concepts, methodologies, and prospects of vehicle power management.

Intelligent Control of Connected Plug-in Hybrid Electric Vehicles

Intelligent Control of Connected Plug-in Hybrid Electric Vehicles PDF Author: Amir Taghavipour
Publisher: Springer
ISBN: 3030003140
Category : Technology & Engineering
Languages : en
Pages : 202

Book Description
Intelligent Control of Connected Plug-in Hybrid Electric Vehicles presents the development of real-time intelligent control systems for plug-in hybrid electric vehicles, which involves control-oriented modelling, controller design, and performance evaluation. The controllers outlined in the book take advantage of advances in vehicle communications technologies, such as global positioning systems, intelligent transportation systems, geographic information systems, and other on-board sensors, in order to provide look-ahead trip data. The book contains simple and efficient models and fast optimization algorithms for the devised controllers to address the challenge of real-time implementation in the design of complex control systems. Using the look-ahead trip information, the authors of the book propose intelligent optimal model-based control systems to minimize the total energy cost, for both grid-derived electricity and fuel. The multilayer intelligent control system proposed consists of trip planning, an ecological cruise controller, and a route-based energy management system. An algorithm that is designed to take advantage of previewed trip information to optimize battery depletion profiles is presented in the book. Different control strategies are compared and ways in which connecting vehicles via vehicle-to-vehicle communication can improve system performance are detailed. Intelligent Control of Connected Plug-in Hybrid Electric Vehicles is a useful source of information for postgraduate students and researchers in academic institutions participating in automotive research activities. Engineers and designers working in research and development for automotive companies will also find this book of interest. Advances in Industrial Control reports and encourages the transfer of technology in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. The series offers an opportunity for researchers to present an extended exposition of new work in all aspects of industrial control.

Intelligent Vehicles

Intelligent Vehicles PDF Author: David Fernández-Llorca
Publisher: MDPI
ISBN: 3039434020
Category : Technology & Engineering
Languages : en
Pages : 752

Book Description
This book presents the results of the successful Sensors Special Issue on Intelligent Vehicles that received submissions between March 2019 and May 2020. The Guest Editors of this Special Issue are Dr. David Fernández-Llorca, Dr. Ignacio Parra-Alonso, Dr. Iván García-Daza and Dr. Noelia Parra-Alonso, all from the Computer Engineering Department at the University of Alcalá (Madrid, Spain). A total of 32 manuscripts were finally accepted between 2019 and 2020, presented by top researchers from all over the world. The reader will find a well-representative set of current research and developments related to sensors and sensing for intelligent vehicles. The topics of the published manuscripts can be grouped into seven main categories: (1) assistance systems and automatic vehicle operation, (2) vehicle positioning and localization, (3) fault diagnosis and fail-x systems, (4) perception and scene understanding, (5) smart regenerative braking systems for electric vehicles, (6) driver behavior modeling and (7) intelligent sensing. We, the Guest Editors, hope that the readers will find this book to contain interesting papers for their research, papers that they will enjoy reading as much as we have enjoyed organizing this Special Issue

Energy-Efficient Driving of Road Vehicles

Energy-Efficient Driving of Road Vehicles PDF Author: Antonio Sciarretta
Publisher: Springer
ISBN: 3030241270
Category : Technology & Engineering
Languages : en
Pages : 306

Book Description
This book elaborates the science and engineering basis for energy-efficient driving in conventional and autonomous cars. After covering the physics of energy-efficient motion in conventional, hybrid, and electric powertrains, the book chiefly focuses on the energy-saving potential of connected and automated vehicles. It reveals how being connected to other vehicles and the infrastructure enables the anticipation of upcoming driving-relevant factors, e.g. hills, curves, slow traffic, state of traffic signals, and movements of nearby vehicles. In turn, automation allows vehicles to adjust their motion more precisely in anticipation of upcoming events, and to save energy. Lastly, the energy-efficient motion of connected and automated vehicles could have a harmonizing effect on mixed traffic, leading to additional energy savings for neighboring vehicles. Building on classical methods of powertrain modeling, optimization, and optimal control, the book further develops the theory of energy-efficient driving. In addition, it presents numerous theoretical and applied case studies that highlight the real-world implications of the theory developed. The book is chiefly intended for undergraduate and graduate engineering students and industry practitioners with a background in mechanical, electrical, or automotive engineering, computer science or robotics.

Model Predictive Control

Model Predictive Control PDF Author: James Blake Rawlings
Publisher:
ISBN: 9780975937709
Category : Automatic control
Languages : en
Pages : 0

Book Description


Hybrid Electric Vehicles

Hybrid Electric Vehicles PDF Author: Simona Onori
Publisher: Springer
ISBN: 1447167813
Category : Technology & Engineering
Languages : en
Pages : 121

Book Description
This SpringerBrief deals with the control and optimization problem in hybrid electric vehicles. Given that there are two (or more) energy sources (i.e., battery and fuel) in hybrid vehicles, it shows the reader how to implement an energy-management strategy that decides how much of the vehicle’s power is provided by each source instant by instant. Hybrid Electric Vehicles: •introduces methods for modeling energy flow in hybrid electric vehicles; •presents a standard mathematical formulation of the optimal control problem; •discusses different optimization and control strategies for energy management, integrating the most recent research results; and •carries out an overall comparison of the different control strategies presented. Chapter by chapter, a case study is thoroughly developed, providing illustrative numerical examples that show the basic principles applied to real-world situations. The brief is intended as a straightforward tool for learning quickly about state-of-the-art energy-management strategies. It is particularly well-suited to the needs of graduate students and engineers already familiar with the basics of hybrid vehicles but who wish to learn more about their control strategies.

Practical Business Analytics Using SAS

Practical Business Analytics Using SAS PDF Author: Shailendra Kadre
Publisher: Apress
ISBN: 1484200438
Category : Computers
Languages : en
Pages : 565

Book Description
Practical Business Analytics Using SAS: A Hands-on Guide shows SAS users and businesspeople how to analyze data effectively in real-life business scenarios. The book begins with an introduction to analytics, analytical tools, and SAS programming. The authors—both SAS, statistics, analytics, and big data experts—first show how SAS is used in business, and then how to get started programming in SAS by importing data and learning how to manipulate it. Besides illustrating SAS basic functions, you will see how each function can be used to get the information you need to improve business performance. Each chapter offers hands-on exercises drawn from real business situations. The book then provides an overview of statistics, as well as instruction on exploring data, preparing it for analysis, and testing hypotheses. You will learn how to use SAS to perform analytics and model using both basic and advanced techniques like multiple regression, logistic regression, and time series analysis, among other topics. The book concludes with a chapter on analyzing big data. Illustrations from banking and other industries make the principles and methods come to life. Readers will find just enough theory to understand the practical examples and case studies, which cover all industries. Written for a corporate IT and programming audience that wants to upgrade skills or enter the analytics field, this book includes: More than 200 examples and exercises, including code and datasets for practice. Relevant examples for all industries. Case studies that show how to use SAS analytics to identify opportunities, solve complicated problems, and chart a course. Practical Business Analytics Using SAS: A Hands-on Guide gives you the tools you need to gain insight into the data at your fingertips, predict business conditions for better planning, and make excellent decisions. Whether you are in retail, finance, healthcare, manufacturing, government, or any other industry, this book will help your organization increase revenue, drive down costs, improve marketing, and satisfy customers better than ever before.

Reinforcement Learning-Enabled Intelligent Energy Management for Hybrid Electric Vehicles

Reinforcement Learning-Enabled Intelligent Energy Management for Hybrid Electric Vehicles PDF Author: Teng Liu
Publisher: Morgan & Claypool Publishers
ISBN: 1681736195
Category : Technology & Engineering
Languages : en
Pages : 99

Book Description
Powertrain electrification, fuel decarburization, and energy diversification are techniques that are spreading all over the world, leading to cleaner and more efficient vehicles. Hybrid electric vehicles (HEVs) are considered a promising technology today to address growing air pollution and energy deprivation. To realize these gains and still maintain good performance, it is critical for HEVs to have sophisticated energy management systems. Supervised by such a system, HEVs could operate in different modes, such as full electric mode and power split mode. Hence, researching and constructing advanced energy management strategies (EMSs) is important for HEVs performance. There are a few books about rule- and optimization-based approaches for formulating energy management systems. Most of them concern traditional techniques and their efforts focus on searching for optimal control policies offline. There is still much room to introduce learning-enabled energy management systems founded in artificial intelligence and their real-time evaluation and application. In this book, a series hybrid electric vehicle was considered as the powertrain model, to describe and analyze a reinforcement learning (RL)-enabled intelligent energy management system. The proposed system can not only integrate predictive road information but also achieve online learning and updating. Detailed powertrain modeling, predictive algorithms, and online updating technology are involved, and evaluation and verification of the presented energy management system is conducted and executed.