Real-Time Multi-Chip Neural Network for Cognitive Systems PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Real-Time Multi-Chip Neural Network for Cognitive Systems PDF full book. Access full book title Real-Time Multi-Chip Neural Network for Cognitive Systems by Amir Zjajo. Download full books in PDF and EPUB format.

Real-Time Multi-Chip Neural Network for Cognitive Systems

Real-Time Multi-Chip Neural Network for Cognitive Systems PDF Author: Amir Zjajo
Publisher: CRC Press
ISBN: 1000793524
Category : Science
Languages : en
Pages : 265

Book Description
Simulation of brain neurons in real-time using biophysically-meaningful models is a pre-requisite for comprehensive understanding of how neurons process information and communicate with each other, in effect efficiently complementing in-vivo experiments. In spiking neural networks (SNNs), propagated information is not just encoded by the firing rate of each neuron in the network, as in artificial neural networks (ANNs), but, in addition, by amplitude, spike-train patterns, and the transfer rate. The high level of realism of SNNs and more significant computational and analytic capabilities in comparison with ANNs, however, limit the size of the realized networks. Consequently, the main challenge in building complex and biophysically-accurate SNNs is largely posed by the high computational and data transfer demands.Real-Time Multi-Chip Neural Network for Cognitive Systems presents novel real-time, reconfigurable, multi-chip SNN system architecture based on localized communication, which effectively reduces the communication cost to a linear growth. The system use double floating-point arithmetic for the most biologically accurate cell behavior simulation, and is flexible enough to offer an easy implementation of various neuron network topologies, cell communication schemes, as well as models and kinds of cells. The system offers a high run-time configurability, which reduces the need for resynthesizing the system. In addition, the simulator features configurable on- and off-chip communication latencies as well as neuron calculation latencies. All parts of the system are generated automatically based on the neuron interconnection scheme in use. The simulator allows exploration of different system configurations, e.g. the interconnection scheme between the neurons, the intracellular concentration of different chemical compounds (ions), which affect how action potentials are initiated and propagate.

Real-Time Multi-Chip Neural Network for Cognitive Systems

Real-Time Multi-Chip Neural Network for Cognitive Systems PDF Author: Amir Zjajo
Publisher: CRC Press
ISBN: 1000793524
Category : Science
Languages : en
Pages : 265

Book Description
Simulation of brain neurons in real-time using biophysically-meaningful models is a pre-requisite for comprehensive understanding of how neurons process information and communicate with each other, in effect efficiently complementing in-vivo experiments. In spiking neural networks (SNNs), propagated information is not just encoded by the firing rate of each neuron in the network, as in artificial neural networks (ANNs), but, in addition, by amplitude, spike-train patterns, and the transfer rate. The high level of realism of SNNs and more significant computational and analytic capabilities in comparison with ANNs, however, limit the size of the realized networks. Consequently, the main challenge in building complex and biophysically-accurate SNNs is largely posed by the high computational and data transfer demands.Real-Time Multi-Chip Neural Network for Cognitive Systems presents novel real-time, reconfigurable, multi-chip SNN system architecture based on localized communication, which effectively reduces the communication cost to a linear growth. The system use double floating-point arithmetic for the most biologically accurate cell behavior simulation, and is flexible enough to offer an easy implementation of various neuron network topologies, cell communication schemes, as well as models and kinds of cells. The system offers a high run-time configurability, which reduces the need for resynthesizing the system. In addition, the simulator features configurable on- and off-chip communication latencies as well as neuron calculation latencies. All parts of the system are generated automatically based on the neuron interconnection scheme in use. The simulator allows exploration of different system configurations, e.g. the interconnection scheme between the neurons, the intracellular concentration of different chemical compounds (ions), which affect how action potentials are initiated and propagate.

Memristors for Neuromorphic Circuits and Artificial Intelligence Applications

Memristors for Neuromorphic Circuits and Artificial Intelligence Applications PDF Author: Jordi Suñé
Publisher: MDPI
ISBN: 3039285769
Category : Technology & Engineering
Languages : en
Pages : 244

Book Description
Artificial Intelligence (AI) has found many applications in the past decade due to the ever increasing computing power. Artificial Neural Networks are inspired in the brain structure and consist in the interconnection of artificial neurons through artificial synapses. Training these systems requires huge amounts of data and, after the network is trained, it can recognize unforeseen data and provide useful information. The so-called Spiking Neural Networks behave similarly to how the brain functions and are very energy efficient. Up to this moment, both spiking and conventional neural networks have been implemented in software programs running on conventional computing units. However, this approach requires high computing power, a large physical space and is energy inefficient. Thus, there is an increasing interest in developing AI tools directly implemented in hardware. The first hardware demonstrations have been based on CMOS circuits for neurons and specific communication protocols for synapses. However, to further increase training speed and energy efficiency while decreasing system size, the combination of CMOS neurons with memristor synapses is being explored. The memristor is a resistor with memory which behaves similarly to biological synapses. This book explores the state-of-the-art of neuromorphic circuits implementing neural networks with memristors for AI applications.

Synaptic Plasticity for Neuromorphic Systems

Synaptic Plasticity for Neuromorphic Systems PDF Author: Christian Mayr
Publisher: Frontiers Media SA
ISBN: 2889198774
Category : Neurosciences. Biological psychiatry. Neuropsychiatry
Languages : en
Pages : 178

Book Description
One of the most striking properties of biological systems is their ability to learn and adapt to ever changing environmental conditions, tasks and stimuli. It emerges from a number of different forms of plasticity, that change the properties of the computing substrate, mainly acting on the modification of the strength of synaptic connections that gate the flow of information across neurons. Plasticity is an essential ingredient for building artificial autonomous cognitive agents that can learn to reliably and meaningfully interact with the real world. For this reason, the neuromorphic community at large has put substantial effort in the design of different forms of plasticity and in putting them to practical use. These plasticity forms comprise, among others, Short Term Depression and Facilitation, Homeostasis, Spike Frequency Adaptation and diverse forms of Hebbian learning (e.g. Spike Timing Dependent Plasticity). This special research topic collects the most advanced developments in the design of the diverse forms of plasticity, from the single circuit to the system level, as well as their exploitation in the implementation of cognitive systems.

Memristor Networks

Memristor Networks PDF Author: Andrew Adamatzky
Publisher: Springer Science & Business Media
ISBN: 3319026305
Category : Computers
Languages : en
Pages : 716

Book Description
Using memristors one can achieve circuit functionalities that are not possible to establish with resistors, capacitors and inductors, therefore the memristor is of great pragmatic usefulness. Potential unique applications of memristors are in spintronic devices, ultra-dense information storage, neuromorphic circuits and programmable electronics. Memristor Networks focuses on the design, fabrication, modelling of and implementation of computation in spatially extended discrete media with many memristors. Top experts in computer science, mathematics, electronics, physics and computer engineering present foundations of the memristor theory and applications, demonstrate how to design neuromorphic network architectures based on memristor assembles, analyse varieties of the dynamic behaviour of memristive networks and show how to realise computing devices from memristors. All aspects of memristor networks are presented in detail, in a fully accessible style. An indispensable source of information and an inspiring reference text, Memristor Networks is an invaluable resource for future generations of computer scientists, mathematicians, physicists and engineers.

Science Abstracts

Science Abstracts PDF Author:
Publisher:
ISBN:
Category : Electrical engineering
Languages : en
Pages : 1360

Book Description


Closed-Loop Systems for Next-Generation Neuroprostheses

Closed-Loop Systems for Next-Generation Neuroprostheses PDF Author: Timothée Levi
Publisher: Frontiers Media SA
ISBN: 2889454665
Category :
Languages : en
Pages : 326

Book Description
Millions of people worldwide are affected by neurological disorders which disrupt the connections within the brain and between brain and body causing impairments of primary functions and paralysis. Such a number is likely to increase in the next years and current assistive technology is yet limited. A possible response to such disabilities, offered by the neuroscience community, is given by Brain-Machine Interfaces (BMIs) and neuroprostheses. The latter field of research is highly multidisciplinary, since it involves very different and disperse scientific communities, making it fundamental to create connections and to join research efforts. Indeed, the design and development of neuroprosthetic devices span/involve different research topics such as: interfacing of neural systems at different levels of architectural complexity (from in vitro neuronal ensembles to human brain), bio-artificial interfaces for stimulation (e.g. micro-stimulation, DBS: Deep Brain Stimulation) and recording (e.g. EMG: Electromyography, EEG: Electroencephalography, LFP: Local Field Potential), innovative signal processing tools for coding and decoding of neural activity, biomimetic artificial Spiking Neural Networks (SNN) and neural network modeling. In order to develop functional communication with the nervous system and to create a new generation of neuroprostheses, the study of closed-loop systems is mandatory. It has been widely recognized that closed-loop neuroprosthetic systems achieve more favorable outcomes for users then equivalent open-loop devices. Improvements in task performance, usability, and embodiment have all been reported in systems utilizing some form of feedback. The bi-directional communication between living neurons and artificial devices is the main final goal of those studies. However, closed-loop systems are still uncommon in the literature, mostly due to requirement of multidisciplinary effort. Therefore, through eBook on closed-loop systems for next-generation neuroprostheses, we encourage an active discussion among neurobiologists, electrophysiologists, bioengineers, computational neuroscientists and neuromorphic engineers. This eBook aims to facilitate this process by ordering the 25 contributions of this research in which we highlighted in three different parts: (A) Optimization of different blocks composing the closed-loop system, (B) Systems for neuromodulation based on DBS, EMG and SNN and (C) Closed-loop BMIs for rehabilitation.

The NEURON Book

The NEURON Book PDF Author: Nicholas T. Carnevale
Publisher: Cambridge University Press
ISBN: 1139447831
Category : Medical
Languages : en
Pages : 399

Book Description
The authoritative reference on NEURON, the simulation environment for modeling biological neurons and neural networks that enjoys wide use in the experimental and computational neuroscience communities. This book shows how to use NEURON to construct and apply empirically based models. Written primarily for neuroscience investigators, teachers, and students, it assumes no previous knowledge of computer programming or numerical methods. Readers with a background in the physical sciences or mathematics, who have some knowledge about brain cells and circuits and are interested in computational modeling, will also find it helpful. The NEURON Book covers material that ranges from the inner workings of this program, to practical considerations involved in specifying the anatomical and biophysical properties that are to be represented in models. It uses a problem-solving approach, with many working examples that readers can try for themselves.

Advances in Neural Information Processing Systems 16

Advances in Neural Information Processing Systems 16 PDF Author: Sebastian Thrun
Publisher: MIT Press
ISBN: 9780262201520
Category : Computers
Languages : en
Pages : 1694

Book Description
Papers presented at the 2003 Neural Information Processing Conference by leading physicists, neuroscientists, mathematicians, statisticians, and computer scientists. The annual Neural Information Processing (NIPS) conference is the flagship meeting on neural computation. It draws a diverse group of attendees -- physicists, neuroscientists, mathematicians, statisticians, and computer scientists. The presentations are interdisciplinary, with contributions in algorithms, learning theory, cognitive science, neuroscience, brain imaging, vision, speech and signal processing, reinforcement learning and control, emerging technologies, and applications. Only thirty percent of the papers submitted are accepted for presentation at NIPS, so the quality is exceptionally high. This volume contains all the papers presented at the 2003 conference.

Event-Based Neuromorphic Systems

Event-Based Neuromorphic Systems PDF Author: Shih-Chii Liu
Publisher: John Wiley & Sons
ISBN: 0470018496
Category : Technology & Engineering
Languages : en
Pages : 440

Book Description
Neuromorphic electronic engineering takes its inspiration from the functioning of nervous systems to build more power efficient electronic sensors and processors. Event-based neuromorphic systems are inspired by the brain's efficient data-driven communication design, which is key to its quick responses and remarkable capabilities. This cross-disciplinary text establishes how circuit building blocks are combined in architectures to construct complete systems. These include vision and auditory sensors as well as neuronal processing and learning circuits that implement models of nervous systems. Techniques for building multi-chip scalable systems are considered throughout the book, including methods for dealing with transistor mismatch, extensive discussions of communication and interfacing, and making systems that operate in the real world. The book also provides historical context that helps relate the architectures and circuits to each other and that guides readers to the extensive literature. Chapters are written by founding experts and have been extensively edited for overall coherence. This pioneering text is an indispensable resource for practicing neuromorphic electronic engineers, advanced electrical engineering and computer science students and researchers interested in neuromorphic systems. Key features: Summarises the latest design approaches, applications, and future challenges in the field of neuromorphic engineering. Presents examples of practical applications of neuromorphic design principles. Covers address-event communication, retinas, cochleas, locomotion, learning theory, neurons, synapses, floating gate circuits, hardware and software infrastructure, algorithms, and future challenges.

Advances in Neural Information Processing Systems 17

Advances in Neural Information Processing Systems 17 PDF Author: Lawrence K. Saul
Publisher: MIT Press
ISBN: 9780262195348
Category : Computers
Languages : en
Pages : 1710

Book Description
Papers presented at NIPS, the flagship meeting on neural computation, held in December 2004 in Vancouver.The annual Neural Information Processing Systems (NIPS) conference is the flagship meeting on neural computation. It draws a diverse group of attendees--physicists, neuroscientists, mathematicians, statisticians, and computer scientists. The presentations are interdisciplinary, with contributions in algorithms, learning theory, cognitive science, neuroscience, brain imaging, vision, speech and signal processing, reinforcement learning and control, emerging technologies, and applications. Only twenty-five percent of the papers submitted are accepted for presentation at NIPS, so the quality is exceptionally high. This volume contains the papers presented at the December, 2004 conference, held in Vancouver.